
Lattice Based Modularization of Static Analyses
M. Eichberg, F. Kübler, D. Helm, M. Reif, G. Salvaneschi and M. Mezini

Technische Universität Darmstadt
Germany

<eichberg,kuebler,helm,reif,salvaneschi,mezini>@cs.tu-darmstadt.de

Abstract
Static analyses which compute conceptually independent
information, e.g., class immutability ormethod purity are typ-
ically developed as standalone, closed analyses. Complemen-
tary information that could improve the analyses is either
ignored by making a sound over-approximation or it is also
computed by the analyses, but at a rudimentary level. For ex-
ample, an immutability analysis requires field mutability in-
formation, alias/escape information, and information about
the concurrent behavior of methods to correctly classify
classes like java.lang.String or java.util.BigDecimal.
As a result, without properly supporting the integration of in-
dependently developed, mutually benefiting analysis, many
analyses will not correctly classify relevant entities.
We propose to use explicitly reified lattices that encode

the information about a source code element’s properties
(e.g., a method’s purity or a class’ immutability) as the sole
interface between mutually dependent analyses. This en-
ables the composition of multiple analyses. Our case study
shows that using such an approach enables highly scalable,
lightweight implementations of modularized static analyses.

Keywords Static Analysis Framework, Modularization, Lat-
tice, Abstract Interpretation

1 Introduction
The development of new static analyses is a challenging task
supported by many frameworks – in particular in the do-
main of data-flow analyses, e.g., [18, 20]. A crucial step when
designing new analyses is to decide which information will
be used; this decision determines the analysis’ precision and
recall. Basically all analyses benefit from using information
not belonging to their primary domain. For example, an im-
mutability analysis can benefit from escape/alias information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam,
Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5939-9/18/07. . . $15.00
https://doi.org/10.1145/3236454.3236509

but also from purity information. Yet, current approaches,
e.g., [14], do not support the integration with other state-of-
the-art analyses which compute independent properties and,
therefore, either ignore such information at all or support
some basic cases as part of the primary analysis.

Integrating mutually dependent analyses requires to solve
several challenges. First, mutual dependencies lead to fix-
point computations. Second, some specific properties may
create cyclically-dependent computations. Such cycles – that
may span across different analyses – must be detected and
solved with a sound and precise resolution strategy. Third,
integrating multiple analyses requires to identify the parts
for which some information is actually required: computing
all information would significantly limit the scalability. I.e.,
analyses should be demand-driven [1, 21]. Finally, assessing
the contribution of each analysis towards the overall goal
requires means to (de)activate certain analyses which makes
their strict modularization an essential property.
To solve the challenges above, we propose a principled

approach based on lattices as the foundation for modeling
the properties associated with source code elements. Our
solution facilitates a lightweight implementation of strictly
modularized analyses that collaboratively compute complex
information. That is, the analyses have no direct dependen-
cies and can be developed independently. Further, we enable
the use of analyses with different precision/performance
trade-offs and, therefore, encouraging a thorough perfor-
mance assessment of analyses. The analyses are lightweight
in the sense that (1) they can compute information for one
specific entity at a time without analyzing other entities,
e.g., the set of transitively thrown exceptions for a specific
method can be computed without having to traverse the
call graph, and (2) the analyses do not have to deal with the
issues of cyclic dependencies or fix-point computations.

2 Lattice Based Modularization
In our approach, analyses are two functions which, together,
compute an information of a specific kind for a specific en-
tity, e.g., a method’s purity level, or the exceptions thrown
by a method. A finite height lattice for each specific kind of
information determines all possible extensions and their re-
lation. We use the lattice’s top value to model the best value
and the bottom value for the sound over-approximation. For
example, the top of a method’s purity lattice [8] is Pure and
the bottom is Impure. In the following, we say that an analy-
sis computes a property belonging to a specific (property) kind.

1

https://doi.org/10.1145/3236454.3236509

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands M. Eichberg et al.

Furthermore, bottom elements are used as the fallback prop-
erties if no analysis, which computes a respective property,
is scheduled.

Listing 1 gives the Scala definition of the analyze function
that collects the information to compute a desired property
for a specific entity; e.g., in case of a purity analysis it pri-
marily collects the called methods’ purities.
1 type OnUpdateContinuation =
2 (Entity, Property, State) => ComputationResult
3 type Dependees = Traversable[(Entity, PropertyKind)]
4 type ComputationResult =
5 (Entity, Property, Dependees, OnUpdateContinuation)
6 def analyze(e: Entity): ComputationResult

Listing 1. Core definitions used by the framework

The analyze function returns for a source code element
(Entity) the first result (Property) along with the list of
required information (Dependees) and the second (callback)
function (OnUpdateContinuation) that processes the queried
properties when they become available or are updated. For
example, consider determining if the method getA in the
Java snippet in Listing 2 is side-effect free and deterministic.
1 class X {
2 private int a; // (effectively) final
3 public X(int a) { this.a = a; } /∗<=pure∗/
4 public int getA() { return a; } /∗<=pure∗/ }

Listing 2. Analyzed Java code

The analyze function will identify that it is necessary to
know if the field a is (effectively) final to decide if the method
is deterministic or not. Hence, it returns (1) that information
about the field a’s mutability is required along with (2) the
OnUpdatedContinuation function that, given the respective
information, will continue computing getA’s purity. The
latter function returns Pure if the field is (effectively) final.
This result is considered final by the framework if Dependees
is empty; in that case the OnUpdateContinuation is ignored.

In our model, the OnUpdateContinuation functions, that
compute a property using other properties, return the best
possible property until a counter example is found. In other
words, the results of an analysis w.r.t. a specific entity usually
starts with the top value of the lattice and then falls down the
lattice. All OnUpdateContinuation functions have to satisfy
the following requirements:

Monotonicity Whenever the function returns from com-
puting a property for a specific entity, the property must
be the same as before or must be below the previous result
w.r.t. the underlying lattice. This is achieved using the meet
operation of the lattice on the previous result and the best
possible result considering just the current update.

Always Sound Over Approximation The returned result
must consider all past and current information that was
passed to it and the result must be a sound over-approximation

w.r.t. this information. For example, if a method nd, called
by a method s, is not deterministic then the analysis for s is
no longer allowed to report that s is pure. Instead, it must
return side-effect free or impure.

In the model, entities are either concrete code elements, as
in the previous example, or artificial entities such as the call
graph, allowing attaching properties to entities for which
no source code is available. Requiring that all inter-analysis
communication is exclusively done by querying the current
state of properties and by returning ComputationResults
enables strict modularization, i.e., the complete decoupling
of the code bases belonging to different analyses.

1 class PropertyStore {
2 def apply(Entity, PropertyKind): (Entity,Property,State)
3 def schedule(f: (Entity) => ComputationResult) : Unit
4 def waitOnCompletion() : Unit }

Listing 3. Core methods of the PropertyStore

The so-called PropertyStore implements the functionality
to execute analyses and to provide information about prop-
erties. To query a property, the apply method (cf. Listing 3)
is used. It will return the current property for the given prop-
erty kind and entity. The return value also specifies if the
property is final or may be updated. The latter is crucial to
enable clients to also commit final results which – in turn –
makes it possible to clean up the state required to notify anal-
yses that depended on some information. This prerequisite
is necessary for scalability.
To execute an analysis, it is necessary to schedule the

functions that compute the properties. When all initially
and subsequently scheduled computations have finished,
we check if all queried properties were computed by some
(scheduled) analysis. If not, the fallback properties are used. If
no fallbacks are required, cyclic computations are identified
and resolved. The analysis finishes if all scheduled computa-
tions have finished, no more fallbacks have to be used, and
no more cycles are found. By calling waitOnCompletion it
is possible to wait until the fix-point is reached.

Cyclic Computations In our approach, computationsmay
form a cyclic dependency and explicit support is provided to
detect and resolve those. This is possible because the lattices
have to be of finite height and updates are required to be
monotonic.

1 class C {
2 static final Point origin = new Point(0,0); /∗<=final∗/
3 static Point getOrigin() { return origin; } /∗<=pure∗/ }
4 class Point { // Point is immutable
5 private final int x, y; // trivially final
6 private int h; // h is lazily initialized
7 Point(int x, int y) { this.x = x; this.y = y; }
8 public int hashCode() { // pure

2

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

9 if(h == 0) h = C.getOrigin().x−x + C.getOrigin().y−y;
10 return h; } }

Listing 4. Java example leading to cyclic computations

For example, in Listing 4, to assess whether the method
hashCode is deterministic, it is necessary to know whether
the Point returned by getOrigin is guaranteed to be struc-
turally equal each time this method is called. As origin is
declared final, this is true if objects of type Point are im-
mutable. While x and y are primitive final fields, proving that
h is effectively immutable is not trivial: we have to prove
that h is lazily initialized to a deterministic value. One way
to prove this, is to evaluate if hashCode, the only method
that writes h, is deterministic – the question we started out
to assess originally. Thus, the determinism of hashCode and
getOrigin, the mutability of Point, and whether h is lazily
initialized to a deterministic value leads to a cyclic depen-
dency among three different property kinds.
As every analysis is required to return a result that is a

sound (over-)approximation of currently available informa-
tion, cycles can simply be resolved by the PropertyStore
by committing an arbitrary element belonging to the cycle
as final. This will then trigger other elements of the cycle to
also be committed as final. For example, in the above case,
it does not matter whether we consider h as immutable or
hashCode as deterministic – in both cases, the overall results
will be that h is found to be immutable and hashCode to be
deterministic.
Cycles are found by computing the closed strongly con-

nected components, i.e., by computing those sets of compu-
tations with two or more elements that have no outgoing
dependencies to computations which do not belong to the
component. Making this restriction is essential to avoid com-
mitting properties prematurely when we reach quiescence.

3 Evaluation
The proposed approach is implemented as part of the OPAL
project1; a static analysis framework for Java bytecode im-
plemented in Scala. We evaluate our approach with a case
study. We have modeled ten different property kinds related
to classes, fields, methods, and allocation sites (cf. Figure 1).
The property kinds provide information eventually used to
compute a method’s purity. We aim to answer the following
questions:
RQ1 Does the approach enable effective modularization of

static analyses such that individual analyses with dif-
ferent performance/precision trade-offs can be used?

RQ2 Does the approach facilitate the assessment of individ-
ual analyses w.r.t. their contribution on a higher-level
analysis goal?

RQ3 Does the approach lead to analyses that are competitive
with the state-of-the-art?

1www.opal-project.de

We implemented a lattice for each of the ten property
kinds in Figure 1. Additionally, we have implemented 14 anal-
yses each deriving exactly one property kind. For three of
the property kinds (Purity , Escape, and Field Mutability) we
implemented multiple analyses with different precision/per-
formance trade-offs.

3.1 Property Kinds
3.1.1 Properties of Specific Code Elements
Next, we discuss properties which are related to one specific
source element, such as a specific class or allocation site:

Field Mutability Specifies whether a field is Effectively
Final or not; i.e., whether clients reading the field’s value will
always see the same value after initialization of the object
has finished. Fields which are explicitly declared final, which
are just set in a constructor, or which are lazily initialized
are considered effectively final.

Class Immutability Specifies the immutability of ob-
jects of a concrete class C. This lattice has three notable
elements:Mutable, Immutable Container, and Immutable.
The first identifies those objects which are mutable.Muta-
ble is also the fallback value. Immutable is used for classes
where the transitively reachable state cannot be mutated;
e.g., java.lang.Integer. An Immutable Container class is
not directly mutable; i.e., all fields are effectively final, but
the transitively reachable state is potentially mutable; im-
mutable collections are prototypical examples of immutable
container classes.

Object EscapeDescribes the lifetime and the accessibility
of newly created objects or parameters to determine in which
way the value escapes the current scope [3, 13]. The escape
information is associated with the respective allocation site
(i.e., the NEW or NEWARRAY instruction which created the ob-
ject) or formal parameter. No Escape is used for objects that
are only accessible from within their creator method. Escape
In Callee is used for objects that are passed to methods that
do not change the escape state; i.e. the object’s lifetime does
not exceed the lifetime of its creating method. For objects
that leave the scope of their creating method, e.g. via a re-
turn or throw statement, or via an assignment to a field of a
parameter, the states Escape Via Return, Escape Via Abnor-
mal Return, and Escape Via Parameter are used. Finally, if
another thread can get access to an object, e.g. via a static
field write, the escape states Escape Via Static Field, and
Escape Via Heap Object are used. In case of an unrestricted
escape the fallback value Global Escape is used.
Return Value Freshness Characterizes how reference

values returned by a method may have escaped. Fresh Re-
turn Value is used for methods that always return a newly
created object that does not escape by other means than a
normal return. Instance methods returning reference val-
ues stored in their receiver object’s (typically private) local
fields (cf. Field Locality) are considered as Getters.

3

www.opal-project.de

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands M. Eichberg et al.

L(0)Field Locality

F(0)Return Value Freshness

Virtual Method
Return Value Freshness

E(0|1)Escape

Virtual Method
Escape

C
om

plex C
yclic D

ependency

P(0|1|2)Purity

Virtual Method
Purity

P(1|2)

I(0)Class Immutability

Type Immutability
I(0)

I(0) P(0|1|2)
Le

ge
nd

IDs of analyses deriving
the property <Prop>. M(0|1)Field Mutability

A(0|1|…)<Prop>

Property ID

Directly related properties.

The analysis A(0) uses the
property <P2> to derive the
property <P1>.

A(0)
<P1> <P2>

Aggregates over the type
hierarchy / the overridden
methods

<P1> <P2>

P(2) F(0)

L(0)

E(1)
F(0)

P(2)

P(2)
F(0)

P(0|1|2)P(0|1|2)

L(0)

L(0)

Figure 1. Supported property kinds and their usage by analyses.

Field Locality Characterizes how values referenced by
fields may escape their owning instance. Fields holding fresh
objects that do not escape their owning instances are Local
Fields [17]. If instances of a subclass leak a field’s value, the
field is considered an Extensible Local Field. If a field’s object
only escapes by being returned, the field is a Local FieldWith
Getter. A field with both properties is an Extensible Local
Field With Getter.

Purity Specifies whether a method has side-effects and,
if not, if it is also deterministic. Deterministic and side-effect
free methods are Pure; e.g., Math.abs(int i). If the method
is non-deterministic but still side-effect free it is Side Effect
Free; e.g., System.currentTimeMillis(). A Contextually
Pure method is pure depending on the calling context, in
particular if all parameters are freshly allocated. Additional
elements of the Purity lattice exist that capture the absence
of allocations and for methods that perform user-defined
domain-specific actions, such as logging.

3.1.2 Properties Abstracting over Multiple Code
Elements

The following property kinds describes properties which
abstract over several entities, e.g., a class and its subclasses.

Type Immutability Specifies the immutability for all
instances of a specific type; i.e., it abstracts over a specific
class as well as all subclasses. For example, while an instance
of the class java.lang.Object is Immutable, instances of
the type Object, which abstracts over all types, areMutable.

Virtual Method Purity Specifies the purity of a method
by abstracting over the method itself as well as all meth-
ods which override the method. For example, the method
Object.hashCode is Pure. Yet, some overridingmethods per-
form lazy initializations which are not thread-safe. Therefore
the Virtual Method Purity is Impure Virtual Method.

Virtual Method Return Value Freshness Specifies the
freshness of a return value by abstracting over the method
itself as well as all methods which override the method.

Virtual Method Escape Specifies the escape level of a
parameter of a method by abstracting over the method itself
as well as all methods which override the method.

3.2 Static Analyses
Wehave implemented 10 basic analyses (cf. Figure 1) in OPAL
to compute the different properties (three for the purity
of methods: P0,P1,P2; one for the immutability of classes;
two for the mutability of fields: M0, M1; two for escape
information: E0, E1; one for the freshness of return values:
F0; one for field locality: L0. A higher number is used for
more precise/more demanding analyses.)

The P0 purity analysis does a linear sweep of a method’s
code and uses fieldmutability as well as class/type immutabil-
ity information. P1 uses the same properties as P0 but per-
forms additional control- and data-flow analyses. P2 uses
escape information and also contextual information at call-
sites. The immutability analysis (I0) just checks if all fields
are effectively immutable. The field mutability analysis (M0)
checks if a class’ private static fields are only written by the
declaring class. The (M1) analysis performs data- and control-
flow analyses to also support non-public instance fields. The
E0 escape analysis is an intra-procedural escape analysis.
E1 is inter-procedural. The F0 analysis determines whether
the return value of a method is guaranteed to be freshly
allocated and non-escaping. For that it primarily aggregates
escape information. For values retrieved from fields, it also
uses field locality information. The field locality analysis
(L0) uses escape and return value freshness information to
determine if all writes to a field write are fresh, non-escaping
values and whether no value read from the field escapes.

4

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis configuration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side Effect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side Effect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for different analysis configurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Different Analysis Schedules
We executed four different configurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is effective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three configurations execute the P2 purity
analysis. The first one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
final configuration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an effec-
tive modularization of analyses, where each analysis com-
putes a single well-defined property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple configuration matter. This result enables
fine-tuning the trade-off between an analysis’ precision and
performance to specific use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible differences, suggesting
that a simple, intra-procedural escape analysis is sufficient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side Effect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side Effect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (≈ 5.3% of those identified by the best analysis config-
uration) being just Side Effect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identification of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the effect of individual supporting analyses
in order to fine-tune the precision/performance trade-off to
the specific use case.
The P0 purity analysis is significantly less precise than

any previous configuration. It identifies less than 5% of all
methods as Pure compared to ≈ 20%. This analysis also does
not identify Side Effect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise configuration - this may still be a viable configuration
if the low precision is sufficient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-off.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a final step, we compared our best configuration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-effect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side Effect Free) and
recall (we identify over 40% of as Side-Effect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands M. Eichberg et al.

4 Related Work
Lattices are at the core of many formal methods – in par-
ticular abstract interpretation [4] – and our approach relies
on the respective mathematical foundations regarding the
composition of lattices and analyses [16]. The goal of the
proposed approach is to provide a practically usable, scalable,
and sound framework that enables the modularization and
exchange of static analyses such that it is easily possible to
reason about their correctness as well precision effects in
the presence of mutual dependencies.
Magellan [6] is an open framework for parallelizing the

execution of collaborating static analyses. Compared to the
proposed approach the dependencies are specified by the
data that is processed and provided.

Several frameworks were proposed that rely on DSLs for
developing static analyses. E.g., Klint et al. [12] discuss an
approach that facilitates writing static analyses that support
code rewritings. They do not address the modularization of
exchangeable static analyses. Datalog, e.g. used as the foun-
dation of DOOP [2], is successfully used to build frameworks
for points-to analyses that enable to build various respec-
tive analyses with different precision/performance trade-offs.
Compared to our approach, they are highly specialized. An-
other example of a framework specialized for data-flow anal-
yses is IDE/IFDS [18, 20], discussed, e.g., in [19]. In [5] the
use of Prolog is discussed as a foundation for a framework
that supports the automatic incrementalization of queries in
case of updates to the underlying code base. An alternative
approach that relies on Scala is presented in [15]. Supporting
incrementalization is not in scope for this approach due to its
inherent limitations w.r.t. the scalability which is a primary
target of our approach. Attribute grammars can be used to
infer program properties in a modular way as used e.g. in Jas-
tAdd [7]. They are used for basic compilation tasks,such as
name and type analysis, and not for complex static analyses
based on abstract interpretation results. Lerner et al. [14] pro-
pose a framework for mutually benefiting static analyses that
communicates analyses results through code optimizations.
Our approach allows use of analysis results even if they can
not be used for optimizations directly. In [9] a lattice-based
approach for scheduling and executing concurrent tasks is
discussed and also applied to static analyses. Compared to
them, in our approach dependencies are just specified by the
analyses and then automatically managed.

5 Conclusion
We propose to use explicitly reified lattices, which represent
the information derived by static analyses, as the exclusive
interface between modularized analyses used to exchange
results. Our evaluation shows that the design of generic
lattices is highly effective to achieve fine-grained reusable
and composable analyses. Further, our approach enables

assessing very precisely the effect of analyses with different
precision/run-time trade-offs w.r.t. a certain goal.

Acknowledgments
This work was supported by the DFG as part of CRC 1119
CROSSING, byDFG grant SA 2918/2-1, by theHessian LOEWE
initiative within the Software-Factory 4.0 project, by the Ger-
man Federal Ministry of Education and Research (BMBF) as
well as by the Hessen State Ministry for Higher Education,
Research and the Arts (HMWK) within CRISP.

References
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel. 2014. FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps (PLDI).

[2] M. Bravenboer and Y. Smaragdakis. 2009. Strictly Declarative Specifi-
cation of Sophisticated Points-to Analyses (OOPSLA).

[3] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. 1999.
Escape Analysis for Java. In OOPSLA.

[4] P. Cousot and R. Cousot. 2014. Abstract Interpretation: Past, Present
and Future (CSL-LICS).

[5] M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Ostermann. 2007.
Automatic Incrementalization of Prolog Based Static Analyses (PADL).

[6] M. Eichberg, M. Mezini, S. Kloppenburg, K. Ostermann, and B. Rank.
2006. Integrating and Scheduling an Open Set of Static Analyses.
(ASE).

[7] Torbjörn Ekman and Görel Hedin. 2007. The Jastadd Extensible Java
Compiler (OOPSLA).

[8] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. 2008. Verifiable
functional purity in Java (CCS).

[9] P. Haller, S. Geries, M. Eichberg, and G. Salvaneschi. 2016. Reactive
Async: expressive deterministic concurrency (SCALA).

[10] W. Huang and A. Milanova. 2012. ReImInfer: Method purity inference
for Java (FSE).

[11] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. 2012. ReIm &
ReImInfer: Checking and inference of reference immutability and
method purity (OOPSLA).

[12] P. Klint, T. van der Storm, and J. J. Vinju. 2009. RASCAL: A Do-
main Specific Language for Source Code Analysis and Manipulation
(SCAM).

[13] T. Kotzmann and H. Mössenböck. 2005. Escape Analysis in the Context
of Dynamic Compilation and Deoptimization (VEE).

[14] Sorin Lerner, David Grove, and Craig Chambers. 2002. Composing
dataflow analyses and transformations (POPL).

[15] Ralf M. 2014. Scalable Automated Incrementalization for Real-Time
Static Analyses. Ph.D. Dissertation. Technische Universität Darmstadt.

[16] F. Nielson, H. Nielson, and C. Hankin. 2005. Principles of Program
Analysis.

[17] D. Pearce. 2011. JPure: a modular purity system for Java (CC).
[18] T. Reps, S. Horwitz, and M. Sagiv. 1995. Precise Interprocedural

Dataflow Analysis via Graph Reachability (POPL).
[19] J. Rodriguez and O. Lhoták. 2011. Actor-based parallel dataflow analy-

sis (CC).
[20] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interpro-

cedural dataflow analysis with applications to constant propagation.
Theoretical Computer Science 167 (1996).

[21] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden. 2016. Boomerang:
Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java
(ECOOP).

6

	Abstract
	1 Introduction
	2 Lattice Based Modularization
	3 Evaluation
	3.1 Property Kinds
	3.2 Static Analyses
	3.3 Executing Different Analysis Schedules
	3.4 Evaluation Results and Discussion

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

