
Systematic Evaluation of the Unsoundness of Call
Graph Construction Algorithms for Java

Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini
Software Technology Group

Technische Universität Darmstadt
Germany

<reif,kuebler,eichberg,mezini>@cs.tu-darmstadt.de

Abstract
Call graphs are at the core of many static analyses ranging
from the detection of unused methods to advanced control-
and data-flow analyses. Therefore, a comprehensive under-
standing of the precision and recall of the respective graphs
is crucial to enable an assessment which call-graph construc-
tion algorithms are suited in which analysis scenario. For
example, malware is often obfuscated and tries to hide its
intent by using Reflection. Call graphs that do not represent
reflective method calls are, therefore, of limited use when
analyzing such apps.

In general, the precision is well understood, but the recall
is not, i.e., in which cases a call graph will not contain any
call edges. In this paper, we discuss the design of a compre-
hensive test suite that enables us to compute a fingerprint
of the unsoundness of the respective call-graph construction
algorithms. This suite also enables us to make a comparative
evaluation of static analysis frameworks. Comparing Soot
and WALA shows that WALA currently has better support
for new Java 8 features and also for Java Reflection. However,
in some cases both fail to include expected edges.

Keywords call-graph construction, static analysis, soundi-
ness

1 Introduction
Call graphs are a central data-structure required by many
static analyses which range from the detection of unused
methods [9] to advanced control- and data-flow analyses [3].
Hence, the algorithm used for constructing a call graph di-
rectly impacts a client analysis’ results; often even to a larger
extent than expected. A study, done by Murphy et al. [17],
which compared different call graph extraction tools for the
C language, revealed that the produced call graphs vary in
more dimensions than they expected. Therefore, a compre-
hensive and competitive evaluation of existing call-graph
algorithm implementations for Java is required to make it
possible to assess which implementation is best suited for
which specific type of project or analysis use case.

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam,
Netherlands
2018. ACM ISBN 978-1-4503-5939-9/18/07. . . $15.00
https://doi.org/10.1145/3236454.3236503

Native language features, such as the resolution of (non-
)virtual method invocations, are in most cases very well
supported [4, 7, 22]; they are the primary target of call-graph
implementations. In contrast, the handling of core APIs (e.g.,
Unsafe, Reflection, or Serialization) as well as the support for
special runtime events is often just an afterthought. Support-
ing such features is possible (reflection is discussed in [6, 15];
native methods in [13, 20]), but is often only addressed par-
tially and limited to specific contexts [1, 2, 14]. Furthermore,
as discussed by Reif et al. [18], a call graph’s soundness also
depends on the kind of the analyzed project, e.g., (extensible)
library or closed command-line application, and how well it
is supported by the algorithm.
The choice of the algorithm and the quality of its imple-

mentation therefore predetermines an analysis’ precision,
and recall (sometimes the term soundiness [14] is used in
this context). Given that the precision is generally well un-
derstood, we will focus on the recall of existing call-graph
implementations. I.e., we will focus on the calls that may be
missed due to insufficient support for selected language fea-
tures or core APIs. Getting a comprehensive understanding
of the recall is important for several analyses – in particular
for security focused ones. E.g., applications often hide their
malicious intent by using Reflection and algorithms without
appropriate support are therefore not suitable for analyzing
such apps [10].

We propose a call-graph assessment suite for the system-
atic evaluation of call-graph algorithms. This suite can be
used to test call-graph implementations in particular w.r.t.
missing call edges due to unsupported features or program-
ming bugs. We also used it to evaluate the two most widely
used Java-analaysis frameworks Soot [23] and WALA [11] to
gain a better understanding of their support for new(er) lan-
guage features, selected core APIs, and their overall quality.
The test suite systematically tests if call sites are resolved
such that those methods, that will be executed at runtime,
are actually part of the call graph; evaluating the precision
is not in focus. The results show that standard language fea-
tures are – as expected – very well supported. The support
for core APIs instead, varies significantly and – surprisingly
– also between the call-graph implementations belonging to
the same framework. In some cases supposedly more precise
algorithms seem to miss more edges than simpler ones.

1

https://doi.org/10.1145/3236454.3236503

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands M. Reif et al.

In the next section 2 we will discuss the approach. After
that, in section 3, we will present the language features and
APIs covered by the proposed test suite. Our Study is pre-
sented in section 4. The paper concludes with a discussion
of related work (section 5) and a conclusion (section 6).

2 Approach
The core idea is to have a wide range of small, focused test
fixtures that – as far as possible – test a single relevant aspect
related to call-graph construction. These test fixtures provide
the ground truth and are used as input for the different call-
graph algorithms.
Figure 1 provides an overview of the proposed approach.

For each set of closely related test cases we use a single mark-
down (.md) file which contains all related tests (<Test Fix-
tures Category>.md). For example, we create one markdown
file for each of the following categories: usages of Java Reflec-
tion, Java 8 language features, usages of sun.misc.Unsafe,
or Serialization. Using markdown enables us to generate a
concise, human-readable description of the test cases that
also contains additional background information. Each test
case consists of a small runnable Java program which uses a
specific language feature and/or API along with a brief de-
scription of the unique features of the test case. Additionally,
each test case contains one or more annotations to describe
the expected call targets; i.e., to specify the ground truth.
The Test Cases Extractor parses the markdown files and

retrieves the test cases, compiles them and bundles each one
into a respective .jar file. After that, we use a Framework
Specific Test Adapter to construct a call graph for each indi-
vidual call-graph implementation. After construction, the
graph is serialized to a common JSON-based representation.
The last step is then performed by the Call Graph Matcher.
It loads the call graph and compares the found call targets
with those explicitly specified in the test cases. A short Re-
port summarizes the results. Next, we provide more details
regarding the individual steps.

Test Case Specification. Each markdown file is structured
in the same way: The first level header (e.g., Trivial Reflection
in Listing 1) identifies the test suite. A second level header
(e.g., TR1 in Listing 1) identifies a concrete test case. After
the second level header comes the specification of the main
class and a short description that is followed by multiple
code snippets which – taken together – form an executable
Java program. The first line of each test case is a Java com-
ment that identifies the target file in which the code will be
stored. In Listing 1 the test case TR1 will be stored in the file
tr1/Foo.java.

Annotating the Ground Truth. In order to detect missing
call edges, a specification of the ground truth is required. We
decided to use Java’s annotations (cf. Line 13 in Listing 1)
to specify the crucial call-graph edges that should be part

1 #TrivialReflection
2 The strings are directly available...
3 ##TR1
4 [//]: # (MAIN: tr1.Foo)
5 Test reflection with respect to static methods.
6 ```java
7 // tr1/Foo.java
8 package tr1;
9 import lib.annotations.callgraph.IndirectCall;
10 class Foo {
11 static String m() { return "Foo"; }
12

13 @IndirectCall(
14 name = "m", returnType = String.class,
15 line = 17, resolvedTargets = "Ltr1/Foo;")
16 public static void main(String[] args) throws Exception {
17 Foo.class.getDeclaredMethod("m").invoke(null);
18 }}
19 ```
20 [//]: # (END)
21 ##TR2 ...

Listing 1. Reflection.md
of the call graph. Due to the decision, that all code snippets
have to be executable programs it is sometimes necessary to
perform multiple calls to achieve the required state. Hence,
each method may contain multiple call sites. Therefore, we
identify the relevant call sites using line numbers, the callee’s
name, as well as its return and parameter types. Currently,
to avoid ambiguous call sites the fixtures are restricted to
have only one method call with the same name per line of
code.
We provide two annotations: First CallSite to specify

direct call edges between two methods. This one is used
for standard virtual method calls, constructor calls, static
method invocations, and default method invocations (Java
8). The second one, IndirectCall, is used to specify indirect
calls. Consider the reflective call m.invoke(null) in Line 17
(Listing 1). In this case the call graph may (also) contain call
edges to the Reflection API and/or a call to the target method
(m in the example); however, the representation of such calls
is framework specific and to abstract over differences, e.g.,
how reflective calls, method references etc. are actually han-
dled by the frameworks, we specify that we expect some
path leading to the expected targets as shown in Lines 13-15.

Serialization of the call graphs. In the JSON representa-
tion (cf. Listing 2) of the call graphs each method is repre-
sented using its name, the parameter types, the return type,
and the fully qualified name of its declaring class. A call
site is represented by the caller method, the line number,
the declared target method, and the set of computed target
methods.

2

Unsoundness of Call Graphs ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

TC1.jar
TC2.jar

Test Cases
Extractor

TC3.jar
Framework
Adapter
currently:

Soot, WALA

Computed
& Serialized
Call Graph
CG3.json

Computed
& Serialized
Call Graph
CG3.json

Computed
& Serialized
Call Graph
TC3.json

<Test Fixtures
Category>.md

Test Case 1(TC1)
…
Test Case 3 (TCN)

Call Graph
Matcher

Report_T
C3.txtReport_T

C3.txtReport
TC3.csv

expected call targets

ge
ne

ra
te

pa
rse

co
m

pi
le

ru
n

an
aly

sis

wr
ite

pr
oc

es
s

Figure 1. Call graph test cases specification, compilation, evaluation, and summarization.

1 { "callSites": [
2 { "declaredTarget": {
3 "name": "getDeclaredMethod",
4 "parameterTypes":

["Ljava/lang/String;","[Ljava/lang/Class;"],
5 "returnType": "Ljava/lang/reflect/Method;",
6 "declaringClass": "Ljava/lang/Class;" },
7 "method": {
8 "name": "main",
9 "parameterTypes": ["[Ljava/lang/String;"],
10 "returnType": "V",
11 "declaringClass": "Ltr1/Foo;" },
12 "line": 12,
13 "targets": [{
14 "name": "getDeclaredMethod",
15 "parameterTypes":

["Ljava/lang/String;","[Ljava/lang/Class;"],
16 "returnType": "Ljava/lang/reflect/Method;",
17 "declaringClass": "Ljava/lang/Class;" }]
18 },
19 ...
20]
21 }

Listing 2. Serialized Call Graph
Validating the Call Graph. Identifying missing call edges
is done by iterating over all methods of a project and com-
paring the found call targets against the specified one. The
presence of call edges related to indirect calls is done by per-
forming a breadth-first search on the computed call graph;
starting with the main method. The final report then lists
missed calls/the failed test cases.

3 Test Suite
In the following, we present the different categories that are
covered in the proposed test suite.1

Virtual Method Calls. At the core of Java are virtual meth-
ods. When such a method is called, the target is resolved

1The test suite is available at our repository: https://bitbucket.org/delors/
jcg/.

depending on the runtime type of its receiver object. When
the runtime type can not be determined precisely, a sound
call-graph algorithm will over-approximate the receiver type
and then determine the set of possible call targets.

Reflection. The Java Development Kit provides two APIs
for reflection which allow to call basically arbitrary meth-
ods at runtime. Both APIs, java.lang.reflect.* as well
as java.lang.invoke.* provide methods to 1) look up a
method in a class by name and then 2) to invoke the method.
Due to that layer of indirection and the fact, that visibility
constraints can be bypassed, the resolution of reflective calls
is challenging. The test cases in this category are divided
in the following sub categories: Trivial Reflection contains
test cases where all Strings are immediate parameters of the
calls of the classic Reflection API (...reflect.*). Hence,
neither control- nor data-flow analysis are required. Trivial
Modern Reflection is similar to the previous one, but the tests
cases use the Java 7 MethodHandle-API. Locally Resolvable
Reflection defines test cases that require intra-procedural
control- and data-flow analysis to resolve the respective
calls. Context-sensitive Reflection requires inter-procedural
control- and data-flow analysis to resolve the reflective calls.

Unsafe API. With sun.misc.Unsafe Java provides an in-
ternal API that allows direct memory manipulations from
within Java code. This API is used bywide spread libraries [16].
Using themethods compareAndSwapObject, putObject, and
getObject, objects can be put into or retrieved from fields.
The test cases therefore test if the call graphs contain call
edges to those virtual methods that are due to an unsafe
field update. E.g., if a methodm invocation occurs on a field
of type T which is updated to an object of type TSub (with
TSub <: T) via Unsafe, the call graph must contain an edge
to TSub .m.

Static Initializer. In Java, every time a class is loaded by
a class loader, a call to its static initializer is performed by
the language runtime. Those calls are implicit and, therefore,
must be explicitly modeled.

Serialization. Java’s serialization mechanism allows to per-
sistently store and retrieve objects using object serialization.

3

https://bitbucket.org/delors/jcg/
https://bitbucket.org/delors/jcg/

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands M. Reif et al.

To use this mechanism, classes must implement the inter-
face java.io.Serializable or java.io.Externalizable.
When (de-)serialization is used, the JVM potentially calls sev-
eral overridable call back method(s). I.e., the call sites are not
part of the Java code base.

Lambdas and Method References. Java 8 introduced two
new language features: lambdas andmethod references.When
these features are used in Java source code, they are compiled
using the invokedynamic instruction. At runtime a so-called
call site object is instantiated by the instruction and used to
indirectly invoke the lambda method/the referenced method
later on.

Java 8 Default Methods. Java 8 introduced default meth-
ods which are defined in interfaces and which have to be
taken into account when resolving virtual method calls. We
included test cases for virtual method invocations w.r.t. in-
terface default methods and maximally-specific interface
methods.

Type Narrowing. Type casts and instanceof checks can be
performed using language features, but also using core Java
APIs. We added several test cases that test both: API-based
and language-feature-based type casts and instanceof checks.

4 Study
In the following, we describe how we evaluate Soot and
WALA’s call-graph implementations by applying the pro-
posed test suite. The study is driven by the following two
research questions.

RQ1 How do the call graphs of Soot andWALA compare
with each other?

RQ2 What are the main sources of unsoundness in built-
in call-graph implementations?

All measurements were done using WALA version 1.4.3
and Soot version 3.0.02. We generated data for the following
algorithms: SootCHA, SootRTA, SootVTA, SootSPARK,WALARTA,
WALA0-CFA, WALAN-CFA

3, and WALA0-1-CFA.
Table 1 summarizes the test result. The first column (Cat-

egory) shows the different test categories. Columns two to
nine show the individual test results for each call-graph
implementation per test category. Every table cell shows a
symbol and a pair of numbers where the symbol indicates
whether all (), some (G#), or no (#) tests succeeded (i.e., the
expected call edge is part of the call graph). The numbers
represent how many test cases succeeded compared to the
total number of tests.
The results (cf. Table 1) show that basic language fea-

tures like static initializers (SI), polymorphic calls (PC), and
type cast (TYPES) are well supported. The only exception
is a static initializer case which is covered neither by Soot

2It is a snapshot from Soot’s nightly build: 16th April 2018 - 5:26 pm.
3We use N=1 throughout the whole evaluation.

nor WALA. This test case pertains a Java 8 feature where
the static initializer of an interface must be called when
a subclass of the interface is initialized and the respective
interface defines a default method. A rather unexpected ex-
ception is the WALAN-CFAimplementation which can only
handle type casts that are performed using Java’s explicit
cast and instanceof APIs but does not support built-in
operators, i.e., the instanceof operator or type casts of the
form (String) o;.
All call-graph implementations from Soot and WALA do

not deal with serialization-related methods (SE). Those meth-
ods must be considered when object (de-)serialization occurs
during call-graph construction, i.e., for instance readObject
and writeObject are called by the runtime (JVM) and, there-
fore, must be included in the call graph.

Language features and APIs that were introduced by Java
8 are still mostly unsupported by Soot but are handled by
WALA. WALA correctly resolves virtual calls (J8PC) w.r.t.
Java 8 interfaces and default methods, Soot does not resolve
any method invocation to an interface’s default method. In
contrast to WALA, Soot also lacks support for Lambdas as
well as calls performed via method references (MR). The
only method reference test case that WALA does not support
concerns object creation.

Support for Java’s reflection API varies between Soot and
WALA’s call graphs. Regarding the different levels of reflec-
tion usage, Table 1 shows that the support for trivial reflec-
tion (TR) is weak in Soot and better supported in WALA.
An outlier is the WALAN-CFAimplementation which does not
support reflection at all.
Table 1 shows that SootCHA, SootRTA, and WALARTAare

able to resolve all method calls related to Java’s Unsafe API
(java.misc.Unsafe). However, more advanced call-graph
implementations are not able to detect those cases. The im-
precision of cheap algorithms benefits the support of the
Unsafe API.

Please note thatWALAN-CFAimplementation performs con-
sistently worse than WALA’s other implementation.

RQ1 -Howdo the call-graph implementations fromSoot
and WALA compare? Soot’s call graphs support less Java
language features and core APIs than WALA’s call graphs.
In particular, the language support for Java 8 is still com-
pletely missing in Soot. When newer Java versions (Java
8 or higher) are analyzed, WALA’s call graphs, except the
WALAN-CFAalgorithm, are better suited. However, when ana-
lyzing older Java version (prior Java 8) Soot is a viable option.
Another distinguishing feature is the resolution of reflective
method calls where WALA’s algorithms are able to resolve
more test cases than Soot’s call-graph implementations.

RQ2 -What is themain source of unsoundness in built-
in call-graph implementations? All built-in call graphs,
those from Soot andWALA, struggle with resolution of reflec-
tive method calls. Another unsoundness source pertaining

4

Unsoundness of Call Graphs ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Table 1. Support of language features and core APIs of Soot and WALA’s call graphs.

Category SootCHA SootRTA SootVTA SootSPARK WALARTA WALA0-CFA WALAN-CFA WALA0-1-CFA

SI G# 5/6 G# 5/6 G# 5/6 G# 5/6 G# 5/6 G# 5/6 G# 5/6 G# 5/6
PC 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6
J8PC G# 3/6 G# 3/6 G# 3/6 G# 3/6 6/6 6/6 6/6 6/6
Lamdbas # 0/5 # 0/5 # 0/5 # 0/5 5/5 5/5 5/5 5/5
MR # 0/8 # 0/8 # 0/8 # 0/8 G# 7/8 G# 7/8 G# 7/8 G# 7/8
TR G# 3/10 G# 3/10 G# 1/10 G# 1/10 G# 5/10 G# 6/10 # 0/10 G# 6/10
LRR # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 G# 1/3 # 0/3 G# 1/3
CSR G# 2/6 G# 1/6 G# 1/6 G# 1/6 # 0/6 G# 2/6 # 0/6 G# 2/6
TMR # 0/3 # 0/3 # 0/3 # 0/3 G# 1/3 # 0/3 # 0/3 # 0/3
UNSAFE 3/3 3/3 # 0/3 # 0/3 3/3 # 0/3 # 0/3 # 0/3
TYPES 6/6 6/6 6/6 6/6 6/6 6/6 G# 2/6 6/6
SE # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 # 0/3

Explanation of category abbreviations: SI = static initializer; PC = polymorphic calls; J8PC = Java 8 polymorphic calls; Lambdas = lambdas;
MR = method references; TR = trivial reflection; LLR = locally resolvable reflection; CSR = context-sensitive reflection; TMR = trivial modern

reflection (java.lang.invoke.MethodHandle); UNSAFE = java.misc.Unsafe API; TYPES = type cast API; SE = serialization;

to Soot’s call graphs is the introduction of new language
features. Several features that were introduced in Java 84 are
not yet supported by Soot. Additionally, corner cases, e.g.,
object creation via method references or static initializers of
interfaces, hinder the sound and correct implementation of
call graphs. This shows the need for a call graph assessment
suite to comprehend a call-graph implementation’s strengths
and weaknesses and provide a test suite for implementors.

4.1 Threats to Validity
The performed evaluation demonstrates the design and use-
fulness of a comprehensive test suite to assess sources of
unsoundness in call graph implementations. The test suite is,
however, not complete w.r.t. to all Java features, core APIs, or
runtime (JVM) callbacks. For instance, test cases for JNI calls,
Java 9 modules, class loading, and others are missing. Also
other scenarios, such as the analysis of partial programs or
software libraries are not discussed. However, the test suite
already covers language features and APIs that are used in
practice and, therefore, allows us to draw valid conclusions
regarding the tested features and core APIs.
Since all test cases are manually annotated, there is a

chance of annotation mistakes. To mitigate this risk, the
programs were executed and all annotations and unexpected
results were independently verified by two authors.

5 Related Work
Testing and benchmarking of static analyses to ensure cor-
rectness was always a concern of the program analysis com-
munity. While testing ensures correctness and benchmark-
ing tries to establish a common baseline for a meaningful
comparison–which mostly concerns the analysis’ precision–
our work targets the recall of call-graph implementations
4Java 8 was first released in March 2014.

which are a fundamental building block for inter-procedural
analyses. Benchmarks and corpora consisting of real-world
applications, such as the DaCapo [5] benchmark suite, the
Qualitas Corpus [21], or the XCorpus [8], are too big and,
therefore, cannot be used to comprehend an implementa-
tion’s unsoundness. Artificial benchmarks or test suites like
DroidBench [3] provide test cases w.r.t. different analysis
features and language-specifics. However, those test cases
are engineered to target the client analysis’ result and are
not suitable to uncover flaws in call-graph implementations.

The empirical study conducted by Murphy et al. [17] com-
pared several different call-graph extractors for the C lan-
guage and found that the extracted call graphs varied in more
different dimensions across the tools than expected. Given
their results, they pointed out that the design space for call
graphs raises several problems because the practical effect
of approximations is not well understood. In their empirical
study they focus on the comparison of complete call graphs,
our approach – in contrast – assesses individual language
features or APIs supported by a single call graph. Moreover,
we do not only provide empirical results but also publish a
test suit that can be used to implement soundy5 call graphs.
In [12] Lhoták does a qualitative comparison between

two different call graphs. He presented two tools where
the first tool can be used to find differences between two
given call graphs and the second tool can be used to inspect
those differences. While those tools aim to comprehend the
difference between two call graphs, for instance to examine
a call graph’s correctness or precision, our approach solely
focuses on soundness aspects and also unveals features that
are not yet supported by any algorithm.

5The knowledge about a implementation’s weaknesses enables a reasoning
about a client analysis’ potential false negatives.

5

ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands M. Reif et al.

6 Conclusion & Future Work
In this paper, we discussed the design of a comprehensive and
extensible call-graph assessment suite that enabled us to ap-
proximate the unsoundness for several call graphs computed
by two famous frameworks: Soot and WALA. The evaluation
revealed the weaknesses and strengths of Soot and WALA’s
built-in call graphs and that both vary significantly.

In the future, we are going to use Hermes [19] to quantify
the influence of a missing feature on real-world applications
and, therefore, enhance the understanding of the importance
of Java language features, APIs, and runtime environment.
Additionally, we will increase the number of test categories,
test cases, and evaluated static analysis frameworks.

Acknowledgments
This work was supported by: the DFG as part of CRC 1119
CROSSING, the Hessian LOEWE initiative within Software-
Factory 4.0, the German Federal Ministry of Education and
Research (BMBF), and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP.

References
[1] Karim Ali and Ondřej Lhoták. 2013. Averroes:Whole-program analysis

without the whole program. In European Conference on Object-Oriented
Programming. Springer, 378–400.

[2] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. 2015.
Combining type-analysis with points-to analysis for analyzing java
library source-code. In Proceedings of the 4th ACM SIGPLAN Interna-
tional Workshop on State Of the Art in Program Analysis. ACM, 13–18.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan No-
tices 49, 6 (2014), 259–269.

[4] David F Bacon and Peter F Sweeney. 1996. Fast static analysis of C++
virtual function calls. ACM Sigplan Notices 31, 10 (1996), 324–341.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, et al. 2006. The DaCapo bench-
marks: Java benchmarking development and analysis. In ACM Sigplan
Notices, Vol. 41. ACM, 169–190.

[6] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezin. 2011. Taming reflection. In Proceeding of the 33rd international
conference on Software engineering - ICSE ’11. ACM Press, New York,
New York, USA, 241. https://doi.org/10.1145/1985793.1985827

[7] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization
of object-oriented programs using static class hierarchy analysis. In
European Conference on Object-Oriented Programming. Springer, 77–
101.

[8] JB Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus–
An executable Corpus of Java Programs. (2017).

[9] Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid Glanz. 2015.
Hidden Truths in Dead Software Paths. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 474–484. https://doi.org/10.1145/2786805.
2786865

[10] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. 2012. Riskranker: scalable and accurate zero-day android mal-
ware detection. In Proceedings of the 10th international conference on

Mobile systems, applications, and services. ACM, 281–294.
[11] IBM. [n. d.]. WALA - Static Analysis Framework for Java. http://wala.

sourceforge.net/. ([n. d.]). [Online; accessed 19-APRIL-2018].
[12] OndâĹĺrej Lhoták. 2007. Comparing call graphs. In Proceedings of the

7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering - PASTE ’07. ACM Press, New York, New York,
USA, 37–42. https://doi.org/10.1145/1251535.1251542

[13] Siliang Li and Gang Tan. 2009. Finding bugs in exceptional situations
of JNI programs. In Proceedings of the 16th ACM conference on Computer
and communications security. ACM, 442–452.

[14] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej
Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,
Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In
defense of soundiness: a manifesto. Commun. ACM 58, 2 (2015), 44–46.

[15] Benjamin Livshits, John Whaley, and Monica S Lam. 2005. Reflection
analysis for Java. In Asian Symposium on Programming Languages and
Systems. Springer, 139–160.

[16] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza,
Matthias Hauswirth, and Nathaniel Nystrom. 2015. Use at Your Own
Risk: The Java Unsafe API in the Wild. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2015). ACM, New York,
NY, USA, 695–710. https://doi.org/10.1145/2814270.2814313

[17] Gail C Murphy, David Notkin, William G Griswold, and Erica S Lan.
1998. An empirical study of static call graph extractors. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 7, 2 (1998),
158–191.

[18] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and
Mira Mezini. 2016. Call graph construction for java libraries. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 474–486.

[19] Michael Reif, Michael Eichberg, Ben Hermann, and Mira Mezini. 2017.
Hermes: assessment and creation of effective test corpora. In Proceed-
ings of the 6th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis. ACM, 43–48.

[20] Gang Tan, AndrewWAppel, Srimat Chakradhar, Anand Raghunathan,
Srivaths Ravi, and Daniel Wang. 2006. Safe Java native interface.
In Proceedings of IEEE International Symposium on Secure Software
Engineering, Vol. 97. 106.

[21] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. 2010. The Qualitas Corpus:
A curated collection of Java code for empirical studies. In Software
Engineering Conference (APSEC), 2010 17th Asia Pacific. IEEE, 336–345.

[22] Frank Tip and Jens Palsberg. 2000. Scalable propagation-based call
graph construction algorithms. Vol. 35. ACM.

[23] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. 2010. Soot: A Java bytecode optimization
framework. In CASCON First Decade High Impact Papers. IBM Corp.,
214–224.

6

https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/2786805.2786865
https://doi.org/10.1145/2786805.2786865
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://doi.org/10.1145/1251535.1251542
https://doi.org/10.1145/2814270.2814313

	Abstract
	1 Introduction
	2 Approach
	3 Test Suite
	4 Study
	4.1 Threats to Validity

	5 Related Work
	6 Conclusion & Future Work
	Acknowledgments
	References

