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ABSTRACT

Current approaches combining multiple static analyses deriving
different, independent properties focus either on modularity or
performance. Whereas declarative approaches facilitate modularity
and automated, analysis-independent optimizations, imperative
approaches foster manual, analysis-specific optimizations.

In this paper, we present a novel approach to static analyses
that leverages the modularity of blackboard systems and combines
declarative and imperative techniques. Our approach allows ex-
changeability, and pluggable extension of analyses in order to im-
prove sound(i)ness, precision, and scalability and explicitly enables
the combination of otherwise incompatible analyses. With our ap-
proach integrated in the OPAL framework, we were able to imple-
ment various dissimilar analyses, including a points-to analysis that
outperforms an equivalent analysis from Doop, the state-of-the-art
points-to analysis framework.
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1 INTRODUCTION

Solving complex static analysis problems often involves solving sev-
eral distinct but interdependent sub-problems. Analyzing amethod’s
purity, e.g., involves interdependent mutability sub-analyses of
classes and fields [38, 40, 64] as well as an escape analysis [15, 50].

Traditionally, static analyses have been implemented in an im-
perative monolithic style, i.e., one super-analysis computes the
results of all sub-problems. Not only do monolithic designs become
complex when mutually dependent problems are involved [12].
More importantly, individual sub-analyses cannot be developed in
isolation, cannot be reused for other analyses, and cannot easily
be added, removed, and exchanged to trade-off between precision,
sound(i)ness [55], and performance in a fine-tuned way, i.e., to
enable pluggable precision/sound(i)ness/performance.

To address these requirements, it is desirable to encode solutions
for sub-problems of a complex static analysis in separate modules.
However, while encoded in independent modules, the execution
of inter-dependent sub-analyses needs to be interleaved to enable
exchanging intermediate results. The latter is often necessary for
optimal precision, as has been proven by the theory of reduced
products in abstract interpretation [19] and was more recently
demonstrated for other kinds of analyses [11, 28, 38].

Recently, declarative approaches to static analysis using the
Datalog language [12, 56, 78] are gaining increased popularity—
especially in the area of points-to analyses [12, 72, 74, 78]. Such
approaches nicely support the requirements stated above. Analyses
are implemented as sets of rules that are evaluated by an underlying
constraint solver. Thus, complex analyses can be broken down
into simpler, independently-developed analyses. The underlying
solver transparently resolves their dependencies and propagates
intermediate updates according to the specified rules, thus enabling
interleaved execution. Moreover, the solver can (a) apply analysis-
independent optimizations, e.g., by rearranging the computation
order (although manual optimization is still necessary [12, 71]),
and/or (b) automatically parallelize the execution [45].

However, using Datalog and giving solvers full control comes
with drawbacks in terms of both performance and generality. First, it
is not possible to exploit analysis-specific knowledge in managing
the execution and dependencies of the analyses. Such knowledge
can help boost scalability. For example, an imperative purity analy-
sis that determines whether a method is deterministic by, among
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others, checking the mutability of fields 𝑓1, ..., 𝑓𝑛 could drop fur-
ther checks as soon as any 𝑓𝑖 is found to be mutable. A declarative
analysis whose execution is driven by a general-purpose solver
cannot take this short-cut. Analysis-specific knowledge is also valu-
able to correctly compose incompatible optimistic and pessimistic
analyses (as defined in [34, 53]). Second, the Datalog solver uses
analysis-independent data structures and analyses cannot exploit
data structures that are tailored for their specific needs. Such opti-
mized data structures, like tries, can be crucial for achieving perfor-
mance. Finally, the fully declarative approach fosters a one-size-fits-
all style, limiting generality. For instance, by relying on relations,
Datalog-based approaches support only set-based lattices, while
many common analyses require other kinds of lattices. Constant
propagation, e.g., is usually implemented via singleton-value-based
lattices, making it infeasible to implement it using Datalog [56, 73].

In this paper, we address these issues of declarative approaches,
without comprimizing on their benefts. Specifically, we propose
a novel generic approach together with a proof-of-concept im-
plementation in the OPAL framework [26] for lattice-based fixed-
point computations with support for lattices of any kind including
singleton-value-based, interval, and set lattices. Like fully declara-
tive approaches, it features modular analyses encoded as indepen-
dently compilable, exchangeable, and extensible units. However,
it does not rely on a general-purpose declarative framework and
constraint solver. It offers a specialized approach mixing imperative
and declarative styles. The developer of an OPAL analysis imple-
ments its core functionality imperatively, but declaratively specifies
its dependencies, e.g., the lattice that the analysis computes and
lattices it depends on to do so, as well as several constraints regard-
ing its execution. Dependencies and constraints are automatically
handled by our custom solver during analysis execution.

Our architecture is reminiscent of blackboard systems [17]: De-
pendent analyses implemented in decoupled modules coordinate
their executions implicitly by writing into and reading from a cen-
tral data structure (the "blackboard"). Whenever new (intermediate)
results are written to the blackboard, the solver automatically (and
concurrently) schedules the execution of dependent analyses to
satisfy the declaratively specified dependencies and constraints.

Like declarative approaches, we decouple mutually dependent
analyses, enabling their isolated development and interleaved par-
allel execution out-of-the-box. At the same time, we improve over
declarative approaches in two regards. First, beyond automatic
and transparent optimizations and parallelization, by featuring an
imperative programming style within each analysis module, our ap-
proach enables analysis-specific optimizations and data structures.
The possibility to specify fine-grained (analysis-specific) constraints
enables further optimizations, e.g., suppressing interleaved execu-
tion of some analyses to avoid unnecessary intermediate computa-
tions. Second, with a custom solver that is agnostic of the lattices
used by analyses, our approach is generic and supports arbitrary
kinds of analyses. Using it, one can naturally express dataflow and
constraint-based analyses based on arbitrary lattices. Moreover,
declarative declarations enable OPAL to consider analysis-specific
constraints in managing dependencies. To the best of our knowl-
edge, this is the first approach to correctly compose lazily computed
incompatible optimistic and pessimistic analyses.

To recap, this paper contributes:

• A list requirements on frameworks for collaborative static
analysis that is distilled from three case studies (Section 3).

• A novel approach, that satisfies all these requirements (Sec-
tion 4). It advances the state-of-the-art in implementing mod-
ular inter-dependent analyses.

• A thorough evaluation of the approach that supports our
claims on generality, showcases itsmodularity features, points
out performance improvements over Doop [12], the state-
of-the-art declarative framework, and provides promising
results for parallelization (Section 5).

2 BACKGROUND AND TERMINOLOGY

In this section, we shortly introduce blackboard systems and present
terminology used throughout the paper.

Blackboard Systems [17] use a central data structure - the black-
board - to coordinate the collaborative work of otherwise decoupled
knowledge sources. The latter contribute (partial) information to the
blackboard towards collaboratively reaching an overall goal. The
blackboard notifies knowledge sources about availability of new
information they might require through a control mechanism that
decides which knowledge sources should be executed in what order.
The information can then be queried by the knowledge sources,
which execute and produce further information. Each execution of
a knowledge source is called an activation.

Entity: The term is used to characterize anything one can com-
pute some information for. Entities can be concrete code elements,
e.g., classes, methods, or allocation sites, or abstract concepts such
as all subtypes of a class. The set of entities is not necessarily defined
a priori and can be created on-the-fly while analyses execute.

Property Kind: The term characterizes a specific kind of informa-
tion that can be computed for an entity, e.g., mutability of classes,
purity of methods, or callees of a specific method. Each property
kind represents one lattice of possible values.

Property: The term characterizes a specific value in the lattice
of some property kind that is attached to some entity, e.g., a class
can be mutable or immutable, a method can be pure or impure, a
specific method may invoke a specific set of methods. Per entity at
most one property of a specific kind can be computed.

Analysis: The term characterizes an algorithm that given an en-
tity computes its property of a certain kind. We say that an analysis
computes a property kind as shorthand for "an analysis computes
properties of that property kind for a given kind of entity". Analyses
are knowledge sources in the sense of the blackboard architecture;
the properties they compute constitute the information that they
contribute to and/or query from the blackboard.

3 CASE STUDIES

We discuss case studies involving several interrelated sub-analyses
to distill a list of requirements on static analysis frameworks. During
the discussion, we emphasize concepts whenever they occur. The
case studies represent very dissimilar kinds of analyses. In particu-
lar, they require different kinds of lattices, including singleton-value
lattices (e.g. in 3.3) and set-based lattices (e.g. in 3.2). This motivates
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the first requirement: Static analyses frameworks must support
varied domain lattices (R1).

3.1 Three-Address Code

The first case study is an analysis to produce a three-address code
representation (TAC) of JVM bytecode, presented in more detail
in previous work [66]. In its basic version, TAC uses def/use, type,
and value information (including constant propagation) provided
by an abstract-interpretation-based analysis (AI). To increase preci-
sion, AI may be enhanced with analyses that refine type and the
value information for method return values and fields. However,
such additional analyses may negatively affect the runtime. Hence,
systematic investigation of the precision/performance trade-off is
needed to decide whether to use such additional analyses on a case-
by-case basis. To this end, a separation into modules that can be
enabled/disabled is beneficial. In general, we derive the following
requirements regarding support for modular pluggable analyses.

For systematically studying precision/soundness/performance
trade-offs, static analysis frameworks should support en/disabling
inter-dependent analyses (R2). To maximize pluggability, analyses
should be defined in decoupled modules, and yet be able to collabo-
ratively compute properties (collaborative analyses). As individual
analyses can be disabled, it should be possible to specify soundly
over-approximated fallback values1 for the properties they compute,
to be used by dependent analyses in lack of actual results (R3).

Moreover, an approach formodular collaborative analyses should
support their interleaved execution without them knowing about
each other’s existence (R4). Two analyses are executed interleaved,
if they can interchange intermediate results. This is important for
optimal precision [19]: knowledge gained during the execution of
analysis 𝐴1 may be used by the execution of another analysis 𝐴2
on-the-fly to refine its result and, in turn, this may enable further
refinement for 𝐴1. The precision of field- and return-value refine-
ment analyses profits from interleaved executions, as they depend
on each other cyclically. If a method m returns the value of a field f,
then m’s return value depends on f’s value. If the value returned by
m is written into f, then f’s value also depends on m’s return value.

However, interleaved execution must in specific cases be sup-
pressed to ensure correctness. This is the case for the composition of
pessimistic and optimistic analyses. Pessimistic analyses start with
a sound but potentially imprecise assumption and eventually refine
it. Optimistic analyses start with an unsound but (over)precise as-
sumption and progress by reducing (over)precision towards a sound
result. Field- and return-value refinement analyses are pessimistic—
the declared return type of method 𝑚, say List, is a sound but
eventually imprecise initial value for the return-value analysis;
during the execution, the analysis may find out that 𝑚 actually
returns the more precise result, say ArrayList. AI is an optimistic
analysis—it starts with the unsound assumption that all code is
dead and refines it by adding statements found to be alive towards a
sound, but potentially less precise result. Optimistic and pessimistic
analyses are incompatible for interleaved execution, because they

1To minimize the effect of fallback values on precision, it makes sense to compute the
fallback by using locally available information, e.g., using declared type information,
instead of always returning the same over-approximated value.

refine the respective lattices in opposite directions. As a result, ex-
changing intermediate results may cause inconsistencies, thereby
violating monotonicity. Thus, the analysis framework must enforce
that only final results of pessimistic analyses are passed to depen-
dent optimistic analyses (and vice-versa), avoiding interleaving and
suppressing non-final updates (R5).

For illustration, consider the example of some piece of code, say
𝑐 , that contains a call to a method𝑚1 that is mutually recursive
with a method𝑚2, but is conditioned on a field 𝑓 being an instance
of LinkedList. To analyze 𝑐 , we combine a field-value analysis
𝐹𝐴, an 𝐴𝐼 analysis, and a call graph construction algorithm, 𝐶𝐺 .
Assume that 𝐹𝐴, which is a pessimistic analysis, initially reports
the type of the field 𝑓 to be List. Given this information, AI would
optimistically consider 𝑐 to be live and𝐶𝐺 , hence, will consider both
𝑚1 and𝑚2 to be reachable. Because of the mutual recursion (and
also because of the monotonicity requirement), this result cannot be
changed later, if 𝐹𝐴 finds out that 𝑓 can only contain ArrayLists.
If, however, the latter information was present when AI analyzed
the code, 𝑐 would have been marked as dead, and 𝐶𝐺 would have
marked𝑚1 and𝑚2 as unreachable. Thus, the results of this com-
bination of analyses is non-deterministic and possibly incorrect
(imprecise, if𝑚1 and𝑚2 are falsely reported to be reachable).

3.2 Modular Call Graph Construction

Inter-procedural analyses presume a call graph (CG): Given method
m, CG provides information about (a) methods that may be invoked
at a call site in m (callees) and (b) call sites from which m may be
invoked (callers).We use the CG tomotivate the need for supporting
further kinds of execution interleaving (beyond R4) as well as
further requirements. The previous case study illustrated the need
for interleaved execution of inter-dependent analyses that calculate
different properties and operate on different entities (composition
of analyses for refining field and return values with TAC). The CG
use case illustrates two further kinds of interleaved execution.

First, we need interleaved execution of multiple instances of the
same analysis operating on different code entities to collaboratively
compute a single property, whereby each instance contributes par-
tial results (R6). For example, different executions of a CG analysis
for different callers of a method𝑚 need to contribute their partial
results to collaboratively derive all of𝑚’s callers (computing callers
of a method is inherently non-local).

Second, we also need to support interleaving of independent
analyses that collaboratively compute a single property (R7). Con-
sider, e.g., the computation of the callees of m. A CG analysis can in
principle consider𝑚 in isolation. A monolithic analysis for callees
is nonetheless not suitable. It makes sense to distinguish between
one sub-analysis that handles standard invocation instructions (e.g.,
CHA [23], RTA [4], points-to-based [12] analysis) and sub-analyses
dedicated to non-standard ways of method invocation through spe-
cific language features, e.g., reflection, native methods, or function-
ality related to threads, serialization, etc. Non-standard invocation
requires specific handling (e.g., one may deliberately not want to
perform reflection resolution, or may want to perform it based on
dynamic execution traces). By offering such specialized analyses
as decoupled modules, they become highly reusable and can be
combined with different call-graph analysis for standard invocation
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instructions. This makes the call graph construction highly con-
figurable for fine-tuning its performance and sound(i)ness. Hence,
not only a method’s callers but also its callees need to be computed
collaboratively. This time, different analyses targeting different lan-
guage features, rather than different executions of the same CG
analysis, contribute to the same property.

Handling special language features may even rely on integrating
results of external tools or precomputed values (R8). For instance,
one may choose to integrate the results of TamiFlex [10] for reflec-
tive calls, or external tools for analyzing native methods.

The CG case study also motivates support for specifying precise
default values (R9) (in addition to sound fallback values). Consider
the case of an unreachable method𝑚. The CG analysis will never
compute callees or caller information for𝑚. However, this lack of
results is an inherent property of the entity and not the result of a
missing/disabled analysis. A sound fallback value to compensate the
deactivation of the CG module for𝑚 may have to include all meth-
ods and hence be too imprecise. Instead, analyses depending on the
CG should get the information that𝑚 is unreachable—the precise
default value. The analysis developer knows such information and
should be enabled to tell the framework.

Another requirement is motivated by the CG. The CG construc-
tion unfolds along the transitive closure of methods reachable from
some entry points. Hence, it does not make sense to execute the
decoupled modules collaboratively constructing the CG—each han-
dling a particular language feature—globally on all methods of a
program. Instead, they should be triggered only when the overall
analysis progress discovers a newly reachable method. Hence, the
framework must support triggering analyses once the first (inter-
mediate) result for a property is recorded (R10).

Our previous work [65] provides empirical evidence that encod-
ing an RTA sub-analysis and sub-analyses for language-specific
features as collaborative interleaved modules, results in more sound
call graphs and better performance compared to call graph analyses
of the Soot [76], WALA [41], and Doop [12] frameworks.

3.3 Mutability, Escape, and Purity Analysis

The analyses in this subsection illustrate the need for further kinds
of activation modes in addition to triggered analyses, illustrated in
the previous subsection: (a) eager analyses, which refers to comput-
ing an analysis for all entities in the analyzed program, and (b) lazy
analyses, i.e., executing an analysis𝐴1 only for the entities for which
the property that 𝐴1 computes is queried by some (potentially the
same) analysis𝐴2. A further requirement shown by analyses in this
subsection is that the framework should allow analyses to enforce
an execution order that overrides the one determined by the solver.

The use case involves analyses for method purity, class and
field mutability [40, 64], and escape information [15, 50]. The latter
includes aggregated information on field locality and return-value
freshness (cf. [38]). The analyses in this case study interact tightly
and compute properties that may be relevant for both end users
(e.g., method purity) and further analyses (e.g., escape information).
Complex dependencies exists between all these analyses. To fine-
tune the precision/performance trade-off, several analyses for these
property kinds with different precision can be exchanged as needed;
all are optimistic and use TAC and/or the CG information.

Table 1: Summary of Requirements

Lattices and values

R1 Support for different kinds of lattices (3.1, 3.2, 3.3)
R3 Fallbacks of properties when no analysis is scheduled (3.1, 3.3)
R9 Default values for entities not reached by an analysis (3.2)

Composability

R2 Support for enabling/disabling individual analyses (3.1, 3.2, 3.3)
R4 Interleaved execution with circular dependencies (3.1, 3.2, 3.3)
R5 Combination of optimistic and pessimistic analyses (3.1)
R6 Different activations contributing to a single property (3.2)
R7 Independent analyses contributing to a single property (3.2)

Initiation of property computations

R8 Precomputed property values (3.2, 3.3)
R10 Start computation once an analysis reaches an entity (3.2)
R11 Start computation eagerly for a predefined set of entities (3.3)
R12 Start computation lazily for entities requested (3.1, 3.3)
R13 Start computation as guided by an analysis (3.3)

Since the results of analyses in this case study may be of interest
to the end user, it is useful to compute them for all possible entities
eagerly (R11), e.g., computing the mutability of all fields in the
program. However, when the field mutability is only used to sup-
port, e.g., the purity analysis, it may be beneficial for performance
reasons to compute it lazily (R12), i.e., only for the fields for which
mutability is queried by the purity analysis. This illustrates that we
need both eager and lazy execution modes. Eager and lazy versions
of the same analysis should typically share the code and only be reg-
istered with the framework in different ways. The class mutability
analysis also illustrates the need to configure the framework with
analysis-specific execution orders (R13): For performance reasons,
it makes sense to analyze classes in a program in a top-down order
starting with parent classes before their children.

Our previous work ([38]) provides empirical evidence for the
requirements stated in this section. An implementation of the purity
sub-analysis of this case study (and through transitive use, the
mutability and escape sub-analyses) as collaborative analyses with
interleaved execution showed higher precision, more fine-granular
results and similar performance characteristics compared to the
then state-of-the-art purity inference tool ReIm [40].

3.4 Interim Summary

Table 1 summarizes the requirements along the case studies motivat-
ing them. Existing frameworks do not satisfy all of them. Imperative
frameworks lack support for modularity, especiallyR5,R6, andR7.
Declarative approaches, e.g., Doop [12], have other limitations: Be-
ing bound to relations for modeling properties, they can not express
the range of different analyses represented by our case studies (R1).
They also fail to support sound interactions between incompatible
analyses (R5). By giving the solver full control, they do not support
different analysis-specific activation modes (R10-R13).

4 APPROACH

OPAL is the first static analysis framework to build upon the con-
cept of blackboard systems: Static analysis modules correspond to
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1 sealed trait ClassMutability extends PropertyKind {

2 def fallback(Type theClass) = MutableClass

3 }

4 case object ImmutableClass extends ClassMutability

5 case object MutableClass extends ClassMutability

Listing 1: Class Mutability Lattice

knowledge sources; the store that manages the computed proper-
ties corresponds to the blackboard. OPAL combines imperative and
declarative programming styles for analyses. The developer of an
analysis A: (a) implements the lattice representation of the property
values computed by A (4.1), (b) implements two imperative functions
- so-called initial analysis function (IAF) respectively continuation

function (CF) (4.2), (c) declares the property kinds computed by A

and properties A depends on (4.3), and (d) defines how A’s results
are reported to the blackboard (4.4). Guided by the declared de-
pendencies, the blackboard and its fixed-point solver coordinate
the execution of the analyses, thereby (e) ensuring all execution
constraints (4.5), (f) performing fixed-point computations, when-
ever circular dependencies are involved (4.6), and (g) automatically
scheduling and parallelizing the execution of analyses (4.7).

4.1 Representing Properties

Values of a property kind constitute a lattice structure. OPAL sup-
ports singleton value-based, interval, or set-based lattices are possi-
ble (R1). A lattice’s bottom valuemodels the best possible value (e.g.,
pure for method purity); its top value the sound over-approximation
(e.g., impure). Lattices must satisfy the ascending (descending) chain
condition to ensure termination of optimistic (pessimistic) analyses.
When defining a property kind, developers can choose the most
suitable data structures for efficiency.

Developers can also specify fallback and default values. The
blackboard will return the fallback value for some requested prop-
erty, p of kind k, if no analysis is available for k (R3). As it is a
sound over-approximation, the lattice’s top value is a good choice -
however, the fallback value can also be provided by a "proxy" anal-
ysis function that does not query the blackboard, avoiding cyclic
dependencies. The blackboard will return a default value for p, if
an analysis is available, but did not produce any result for some
entity (R9). For instance, call graph analyses only examine methods
reachable from entry points - for any non-reachable method, m, a
default value can be used to state that m is dead and has no (relevant)
callees. A sound fallback value would include all possible methods
as callees of m; thus, in this case, the default value provides more
information than a fallback value. If no default value is declared,
the fallback value is returned.

Developers implement property kinds by specifying an interface,
which can be used to access and manipulate the property values.
When the PropertyKind trait is extended, the framework assigns
an identifier, which can be used to query the blackboard for proper-
ties of that kind. Listing 1 shows exemplary Scala code of a simple
class mutability property kind. Lines 1 to 3 define the base trait for
the property kind and give a sound fallback value in line 2. The two
possible property values are defined in lines 4 and 5.

IAFs
Blackboard

fixed-point
solver

1. query dependent properties

2. current status
3. initial results + dependencies

CFs

4. repeated invocation on updates

5. updated results + dependencies

Figure 1: Overview

4.2 Analysis Structure

An overview of OPAL’s analysis structure is shown in Figure 1.
As mentioned, the analyses are structured in two parts: An initial

analysis function (IAF) and one or more continuation functions (CFs).
These functions can be implemented in any way, as long as they
provide their results as defined by the property kind.

For each entity e to be analyzed by A, A’s IAF is executed. The IAF
collects information directly from e’s bytecode in order to compute
its result. If it needs additional information pertaining to some other
entity e or from another analysis that computes a property kind
k, the IAF queries the blackboard for these dependencies, using
the identifiers of e and k to find the relevant information (arrow
1. in Figure 1). The blackboard will return the currently available
value (2.). This value may, however, not be available, or not final,
either because the respective analysis was not yet executed or
because it has dependencies that yet need to be satisfied. Once the
IAF completes analyzing the entity, it returns to the blackboard
(a) a result computed based on the currently available information
and (b) any remaining dependencies, along with a continuation
function (CF) (3.). Similar to the solver of declarative frameworks,
the blackboard resolves dependencies and automatically invokes the
CFs whenever updates to these dependencies become available (4.).
On completion, CFs also return their updated results to blackboard
(5.), potentially triggering the execution of other CFs. While the IAF
is written imperatively (dotted queries in Figure 1), the subsequent
execution is performed similar to declarative frameworks (straight
lines) by having results declare their dependencies and the solver
being responsible to satisfy them. Executions of the IAFs andCFs are
called analysis activations. To ensure determinism, OPAL executes
the activations for a single property sequentially, while IAFs and
CFs for other properties can execute concurrently.

As analyses get notified about dependency updates through the
invocation of the CF, it is not necessary that dependencies are
computed before or when they are queried. Instead, they can be
computed asynchronously and lazily, i.e., on-demand (R12). This
also allows OPAL to handle cyclic dependencies (R4).

Apart from adhering to this basic structure, developers may
use any suitable strategy to implement an analysis A. A may, e.g.,
focus on specific statements instead of traversing the entire code
of a method (OPAL provides pre-analyses to query specific parts
of the code, e.g., all statements that access a specific field). Also,
analyses can internally use any data structure suitable to achieve
good performance. For illustration, Listing 2 shows an excerpt from
a simple class mutability analysis’ initial analysis function. The IAF
is given the entity to analyze (Line 1). Lines 3 to 7 show how to
retrieve and handle properties required to compute the IAF’s result:
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1 def analyze(Type theClass) = {

2 [...]

3 Blackboard.get(field, FieldMutability)match {

4 case _: MutableField => return Result(theClass, MutableClass)

5 case dependee: ImmutableField =>

6 if (!dependee.isFinal) dependees += (field −> dependee)

7 }

8 [...]

9 Result(theClass, ImmutableClass, dependees, continuation)

10 }

Listing 2: Class Mutability Analysis

The required property (the mutability of an instance field of the
analyzed class) is queried from the blackboard (line 3) and based
on the returned value, the IAF may compute its result (as in line 4)
or keep the dependency in a list of dependees (line 6) to return it
alongside an intermediate result later (line 9). Line 9 also specifies
the continuation function to be invoked when any of the properties
in dependees is updated. We do not show the code for that CF here,
as its implementation is very similar to lines 4 to 9, i.e., based on
the updated value, the (intermediate) result of the CF is determined.

There are two semantic constraints that the implementations of
the analyses must satisfy, though. First, they must ensure mono-

tonicity of result updates according to the used lattice. Analyses
that optimistically start at a lattice’s bottom value may only refine
approximations upwards; pessimistic analyses only downwards.
OPAL can automatically check the monotonicity of updates. Mono-
tonicity allows analyses to knowwhich refinements of intermediate
results are still possible. Second, analyses must be scheduling inde-
pendent: Whenever they receive the value of some other property
they depend on, they must use the information provided by that
value to compute the result of the current activation, i.e., they may
not defer the incorporation of the newly gained information to a
later activation of a continuation function. This ensures that all
available information is used independent of whether the continua-
tion is later scheduled for execution - an activation may never occur
in case of cyclic dependencies. For example, once the mutability
analysis of a class C knows that C’s instance field f is mutable, it
may no longer report that C could be immutable. The developer of
some analysis A must ensure that A is scheduling independent.

4.3 Declarative Specifications

On top of the IAF and CF, the developer of an analysis A specifies (a)
the property kinds computed by A, (b) its dependencies, (c) on which
entities A will be executed and (d) when the blackboard should start
A’s execution. These specifications are evaluated when the analysis
is registered with the blackboard, before the latter takes over control
of analysis activation. When registering analyses, developers may
also report precomputed values to the blackboard (R8).

The specification of the computed property kinds also states
whether intermediate results are optimistic or pessimistic and
whether the analyses contributes to a collaborative computation
or intends to be the only analysis computing the specified prop-
erty kinds. Dependency specifications state other property kinds

1 override def derivesLazily = Optimistic(ClassMutability)

2 override def uses = Set(Optimistic(FieldMutability))

3 override def register() = {

4 Blackboard.set(Type.Object, ImmutableClass)

5 val analysis = new ClassMutabilityAnalysis

6 Blackboard.registerLazyAnalysis(this, analysis.analyze)

7 }

Listing 3: Registration of Class Mutability Analysis

on which A depends (which A queries) and whether A can process
optimistic/pessimistic intermediate values or final values only.

Analyses can eagerly select a set of entities (e.g., all methods of
the analyzed program) if it is likely necessary to perform the analy-
sis for all of these entities (R11). This is, e.g., useful for analyses
that are of interest to the end user, e.g., if the user is interested in
the purity of all methods. Alternatively, analyses can be registered
to be invoked lazily [9, 42]. Lazy analyses only compute a property
if that property is queried (R12) by another analysis or by the end
user. Finally, an analysis can specify a property kind 𝑘 such that it
is started for every entity for which 𝑘 has been computed (R10).

Some analyses benefit from enforcing a specific order for com-
puting the properties for different entities (R13). For instance, the
class mutability analysis benefits from traversing the class hierarchy
downwards, such that results for a parent class are available before
any subclass is analyzed. In OPAL, this is supported by enabling
the developer of an analysis A to declare a number of computations
to be scheduled whenever A returns a result to the blackboard.

For illustration, Listing 3 shows the registration code for a class
mutability analysis. Line 1 declares that the analysis optimistically
and lazily derives classmutability. Line 2 declares that in performing
its computation, it may require field mutability and that it can
handle intermediate results for this property if they were computed
optimistically. This declaration is complete: No property kinds other
than field mutability (and class mutability) may be queried by this
analysis. Line 4 registers a predefined value stating that the base
class Object is immutable (R8). The IAF analyze is registered as a
lazy analysis in line 6, i.e., the mutability of a certain class will only
be computed on demand, e.g., when a purity analysis queries it.

4.4 Reporting Results

As already mentioned, analyses write intermediate and final results
to the blackboard. They can report results for each single entity in-
dividually or for multiple entities at the same time. A result consists
of a single lattice value representing the new value for the property
or of an update function (UF) for updating the property’s current
value (as recorded in the blackboard) to incorporate the new result.

A UF is used for properties whose computation is not localized to
a specific part of the program, e.g., the callers of a method. For such
properties, constraint-based analyses [1, 59] have been used in the
past; declarative analyses also provide such updates, called deltas,
that only specify the change to the property value instead of the
full new property value. The UFmerges the results of one activation
to the current state of the property (e.g., add a new caller to an
existing set of callers). This way, activations of one or of different
analyses can collaboratively contribute to a property (R6, R7).
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4.5 Execution Constraints

Once the end user chooses a set of analyses to be executed (R2),
OPAL uses the declarative specifications (Section 4.3) to check and
automatically enforce restrictions on analyses that can be executed
together. First, it ensures that any property kind is computed by at
most one analysis or collaboratively; this is to avoid that conflicting
results are reported to the blackboard. Second, if several analyses
derive a property kind collaboratively, OPAL ensures that they are
all either optimistic or pessimistic. Finally, OPAL ensures that all
property kinds required by any analysis are derived by another
analysis or there is a fallback value provided; this is to ensure that
dependencies can be satisfied.

OPAL’s blackboard may run optimistic and pessimistic analyses
simultaneously. But, when doing so, it ensures that no intermediate
results are propagated between them (R5). Given property kind 𝑝
that is computed optimistically and pessimistic analysis 𝐴 depend-
ing on 𝑝 , OPAL does not forward any intermediate values of 𝑝 to
𝐴’s CF. The latter is triggered only when a value of 𝑝 is submitted
marked as final. We say that the dependency of𝐴 on 𝑝 is suppressed.
There are subtle interactions between dependency suppression and
cyclic and collaborative computations, which we explain next.

First, there can be no cyclic dependencies between pessimistic
and optimistic analyses. The correctness of cyclic dependency reso-
lution relies on the assumption that all intermediate approximations
have been processed and no further updates to any property in-
volved in the cycle may happen (cf. Section 4.6). This obviously is
not the case when updates are suppressed.

The interaction between dependency suppression and collab-
oratively computed properties is more involved. Assume a col-
laboratively computed property 𝑝1 that (transitively) depends on
another collaboratively computed property 𝑝2 and consider the case
when one or more of the transitive dependencies between them is
suppressed2. In this case, OPAL must ensure that 𝑝2’s values are
committed as final before 𝑝1’s values can be committed as final,
too. This ensures that final values have been propagated along the
suppressed dependencies. To this end, OPAL derives a commit order

when checking the execution constraints before executing analy-
ses. The commit order is a partial order between collaboratively
computed property kinds: 𝑝1 must be finalized later than any other
collaboratively computed property kind 𝑝2 on which 𝑝1 depends
when there is suppression between them.

Suppression of intermediate updates can also be used to improve
performance: Consider the relation between TAC and AI. Both are
optimistic and TAC could use intermediate AI results. But these
results are typically not useful, hence, it can be beneficial to use sup-
pression to avoid costly computation of these intermediate results
and instead compute the TAC only once on the final AI result.

4.6 Fixed-Point Computation

Computation is started for the entities selected by eager analyses
(R11) (cf. Section 4.3). Whenever intermediate values for properties
are submitted, the blackboard schedules activations of continuation
functions, distributing updated results to analyses that depend

2On a chain of dependencies, more than one may be suppressed. Also, if 𝑝1 depends
on 𝑝3 and 𝑝4 and each of those depends on 𝑝2 , there is more than one path between
𝑝1 and 𝑝2 , on which dependencies may get suppressed.

on them. Additionally, the blackboard starts new computations
by invoking the initial analysis function for properties that are
requested lazily (R12), are triggered by some analyses reaching a
certain entity (R10), or whenever it is guided to do so by running
analyses (R13). This process of scheduling IAF and CF activations is
performed until no further updates are generated – the blackboard
has reached a quiescent state. At this point, however, the properties’
values may not necessarily be final, as there still may be unresolved
dependencies. There are three cases to be considered.

First, an analysis was scheduled for some property kind 𝑝 , but
it did not analyze some entity 𝑒 , for which 𝑝 was requested, e.g.,
because 𝑒 was not reachable in the call graph. In this case, the default
value (R9) is inserted, which may trigger further computations,
until quiescence is reached again.

Second, properties that cyclically depend on each other are not
finalized yet. If such properties form a closed strongly connected

component, i.e., they do not have any dependees outside of the cycle
(but other properties may still depend on them), they are now fi-
nalized to their current value. By requiring analyses to report their
results in a monotonous and scheduling independent way (cf. Sec-
tion 4.2), OPAL guarantees that the cycle resolution is deterministic
and sound. Again, further computations may arise from resolving
cyclic dependencies (including supplying more default values and
resolving further cycles) until quiescence is reached again.

Finally, the blackboard finalizes values for collaboratively com-
puted properties. It respects the commit order computed previously
(cf. Section 4.5): After finalizing a set of collaboratively computed
properties, computation is resumed again. Only once quiescence is
reached again, the next property kinds, as given by the commit or-
der, are finalized. This is repeated until all collaboratively computed
properties have been finalized.

4.7 Scheduling and Parallelization

Blackboard systems require a control component that, upon updates
of the blackboard, decides which knowledge sources to activate
next. In our case, this control component determines the order in
which activations of dependent analyses are executed and is called
scheduler. The order in which dependent analyses are activated can
have significant effects on performance [69].

OPAL allows for the scheduler to be easily exchanged in order
to select the best performing one for any chosen set of analyses.
Apart from general strategies such as first-in-first-out, more specific
algorithms may use the dependency structure or the values of
intermediate approximations to decide the scheduling order. This
is similar to the control component of blackboard systems asking
knowledge sources for an estimated information gain (cf. [17]).

Blackboard systems lend themselves well to parallelization. The
individual knowledge sources, i.e., analyses in our case, are de-
coupled and their activations (both the initial analysis and the
continuations) can be executed in parallel on multiple threads. Up-
dates to the blackboard, on the other hand, can be synchronized
on a special thread or, if that becomes a bottleneck, distributed to
several threads based on the property kind and/or entity. A simple
implementation may consist of several threads that use a shared
data structure holding the property data and use locks or other
mechanisms to synchronize accesses to this shared storage.
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4.8 Summary

Our approach fosters strong decoupling of reified lattices (choice
of data structures), analyses (choice of algorithm), and the solver
infrastructure (the concrete fixed-point solving implementation).
This enables exchanging and optimizing these parts independently.
As reified lattices are the basis for all communication between anal-
yses, different versions of analyses can be implemented at different
trade-offs. The solver manages execution of analyses, tracks depen-
dencies and propagates updates, performs monotonicity checks,
and computes the fixed-point solution.

5 EVALUATION

We evaluate our approach by answering the following questions:
RQ1 Does OPAL support modularization of a broad range of static

analysis kinds with varying requirements?
RQ2 Does exchangeability of analysis modules benefit the end

user and the developer?
RQ3 Can the framework be parallelized?
RQ4 What is the benefit of analysis-specific data structures?
RQ5 How does the performance of OPAL’s analyses compare to

state-of-the-art declarative approaches?
We implemented our approach on top of the Scala-based OPAL

framework for JVM bytecode analysis [26]. However, the approach
is framework and language independent. We answer the above
research questions using the case studies of Section 3 to analyze the
DaCapo 2006 benchmark [7]. We choose DaCapo because Doop,
which we compare to in Section 5.5, has special support for it. Both
the implementation of OPAL as well as the case studies are available
in the OPAL GitHub repository3.

All measurements were performed in a Docker container4 on
a server with two AMD(R) EPYC(R) 7542 @ 2.90GHz (32 cores
/ 64 threads each) CPUs and 512 GB RAM. Analyses were run
using OpenJDK 11.0.5+10 (64-bit) with 32GB of heap memory and
Scala 2.12.9. Experiments were run seven times and we report their
median runtime. We report only excerpts of the results here5.

5.1 Support for Various Analyses

To answerRQ1, we implemented the case studies from Section 3 us-
ing OPAL and argue that these are representatives of different anal-
ysis kinds. The first case study represents pessimistic analyses in
the context of improving precision of a three-address code represen-
tation (TAC)—it shows how basic analyses can be extended by anal-
yses that are specialized to increase the precision of sub-problems’
solutions. The modular call graph of the second case study in-
volves tightly interacting yet decoupled analyses (e.g., points-to
and call graph) and demonstrates how one can plug in further
modular analyses that handle special cases of Java in order to in-
crease the call graph’s soundness. The third case study introduced
several exchangeable analyses for different high-level properties
(immutability, escape information, purity). The individual analyses
are relatively simple and can focus on their respective property,
but by using the results of other analyses, they can be more precise
than a corresponding monolithic analysis of medium complexity.

3https://github.com/stg-tud/opal
4https://doi.org/10.5281/zenodo.3872848
5The entire results can be found here: https://doi.org/10.5281/zenodo.3972736

Table 2: Purity results for different configurations (hsqldb)

Configuration #Pure #SEF #Other #Impure / Analysis

PA2/FMA1/E1 417 482 245 2 635 2.42 s
PA2/E1 363 536 245 2 635 2.40 s
PA2/FMA1/E0 417 481 241 2 640 1.93 s
PA2 362 504 225 2 688 0.98 s
PA1/FMA1 415 431 0 2 933 0.93 s
PA0/FMA1 104 0 0 3 675 0.70 s
PA0 100 0 0 3 679 0.13 s

As discussed in Section 3, to achieve this modularity, several
requirements need to be satisfied (cf. Table 1). Section 4 already
explained how OPAL supports all of them. On the contrary, as we
argue in Section 3.4, no current imperative or declarative framework
supports all these requirements.

We additionally implemented a solver for inter-procedural, fi-
nite, distributive subset problems (IFDS) [68], a well-known general
framework for dataflow problems based on graph reachability. Sim-
ilar to other IFDS solvers, e.g., Heros [8], users provide a domain for
their dataflow facts and four flow-functions that together specify
the IFDS problem. The solver starts one computation per pair of
method and entry dataflow fact and these tasks need to communi-
cate their results. We chose IFDS as it is a general framework that
allows implementing many dataflow analyses and it is dissimilar
from the three case studies’ analyses. In particular, it shows OPAL’s
support for implementing general solvers as individual analyses.

� OPAL’s programming model enables the implementation of dis-

similar analyses, fostering their modularization into a set of compre-

hensible, maintainable, and pluggable units. OPAL is the only static

analysis framework satisfying all requirements from Section 3.4.

5.2 Effects of Exchangeability of Analyses

Our approach strictly decouples property kinds from analyses com-
puting them. Thus, it can provide different analyses computing the
same property kind to cover a wide range of precision, sound(i)ness,
and performance trade-offs. Two experiments examine how this
exchangeability fosters rapid probing, thus benefiting the analysis’
developer and end user alike (RQ2): We explore the impact on
precision in one experiment and that on soundness in the second.

In our first experiment, we run various configurations of our
purity analysis (cf. Section 3.3) with different supporting analyses
for field mutability or escape information with different precision-
scalability trade-offs. No other tool supports similar exchangeability
of interacting purity, mutability, and escape analyses. Table 2 shows
the results for hsqldb. Higher indices indicate more precise analyses.
Comparing the least precise analysis PA0 with the most precise
PA2/FMA1/E1, we observe a reduction in the number of reported
impure methods by ~28%, but a runtime slowdown by 18.6x. Some
configurations even have a large impact on runtime for almost no
gain in precision, e.g., comparing the most precise one with that
using simpler escape analysis E0.

In the second experiment, we evaluate the RTA call graph with
different supporting modules for different JVM features. While
DOOP computes call graphs and offers some modularity, e.g., for re-
flection, no other tool so far includes such fine-grained modules for
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Table 3: Results for different call graph modules for Xalan

Configuration #Reachable Methods #Edges / Analysis

RTA 6 141 46 946 8.58 s
RTA_C 6 162 47 154 8.76 s
RTA_R 8 404 63 821 10.07 s
RTA_X 12 937 106 516 12.99 s
RTA_C_X 12 958 106 743 12.86 s
RTA_S_T_F_C_X 12 970 106 778 13.35 s

C=Configured native methods; R=Reflection; X=Tamiflex;
S=Serialization; T=Threads; F=Finalizer;

call graphs. Also, DOOP does not support RTA, but points-to based
call graphs only. Results for Xalan are shown in Table 3, displaying
the active modules, the number of reachable methods (RMs), call
edges, and respective construction time. While some configurations
discover more methods/edges than others, they may discover dif-
ferent sets of methods/edges. A configuration is only guaranteed to
be strictly more sound if it uses a strict superset of modules. Com-
pared to the baseline, RTA with support for preconfigured native
methods (RTA_C), reaches 21 more methods and ~200 more call
edges. Reflection support (RTA_R) brings over 2 000 more RMs and
16 000 call edges; at the same time, construction time increases by
about 15%. Using the Tamiflex (RTA_X) module instead increases
call graph size (and soundness) more but introduces further slow-
down. With all modules enabled, we reach 111% more methods
and 127% more call edges, at the cost of a 55% increased runtime.
Moreover, the data suggests that different modules benefit different
projects. Tamiflex impacted Xalan and jython, reflection fop, and
serialization hsqldb. Thus, which modules are more relevant than
others may differ between different programs and it may be worth
investigating tradeoffs even at the level of individual projects.

Overall, both experiments confirm that OPAL maintains ex-
changeability benefits from Datalog-based analyses, while gen-
eralizing these results to a broader range of lattices.

� OPAL facilitates systematic investigation of different configura-

tions, supporting users and developers in finding the best trade-off

between precision, sound(i)ness, and scalability.

5.3 Parallelization

We implemented a proof-of-concept parallel version of our black-
board control (RQ3). Using this, we measured the execution time
for the points-to-based call graph with different numbers of threads.
Results for five DaCapo projects are shown in Figure 2. The projects
were selected to have similar runtime to facilitate graph readability,
the other projects show similar behavior. Benefits of paralleliza-
tion over one thread appear at two to four threads and we achieve
speedups of up to 2x for 16 threads. Beyond this, further improve-
ment is negligible; instead, it slightly decreases due to growing
communication overhead. These results are encouraging, given
that the parallel version is not at all optimized. An optimized ver-
sion of it is expected to scale better. Designing such an optimized
version requires further research to identify the optimal way to
parallelize the computation.

� OPAL’s computation can be parallelized and that parallelization

holds potential for increased performance.
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Table 4: Runtime and size of points-to based call graphs

DOOP OPAL OPAL

Project Compile Facts Analysis #RM runtime #RM (Scala)

antlr 107 s 35 s 41 s 8 402 28.36 s 8 653 305.90 s
bloat 109 s 21 s 33 s 9 644 34.43 s 10 000 266.08 s
chart 109 s 38 s 45 s 12 058 40.13 s 12 268 516.37 s
eclipse 109 s 19 s 17 s 7 163 44.89 s 13 429 343.69 s
fop 110 s 41 s 35 s 7 300 18.87 s 7 509 56.64 s
hsqldb 109 s 38 s 32 s 7 097 19.65 s 7 455 55.69 s
jython 108 s 24 s 90 s 12 901 77.65 s 13 161 3 341.62 s
luindex 108 s 21 s 19 s 7 608 19.34 s 7 972 62.57 s
lusearch 108 s 21 s 20 s 8 281 21.03 s 8 540 70.55 s
pmd 109 s 39 s 36 s 8 817 21.47 s 9 028 75.47 s
xalan 108 s 37 s 30 s 7 111 35.59 s 13 330 246.97 s

geo.∅ 108.54 s 29.09 s 32.51 s 29.68 s 191.26 s

5.4 Benefits of Specialized Data Structures

To answer RQ4, we compare two versions of the same points-to
based call-graph algorithm. Both encode points-to, caller, and callee
information as integer values. The first version uses specialized
trie-based data structures, the second one uses standard Scala sets.

Results are given in the sixth and last column of Table 4. Due to its
high memory consumption, we had to run the version using Scala’s
data structures with 128 GB of heap space; jython’s analysis even
required 256 GB. Using tailored data structures, OPAL’s runtime
decreased by 65% to 98% compared to naively using Scala’s sets.

� Selecting suitable data structures adapted to the specific analysis

needs is an important factor for analysis performance. While the

analysis developer can freely select optimized data structures in

OPAL, strictly declarative approaches do not support such choices.

5.5 Comparison with Declarative Approaches

After evaluating individual unique features of OPAL in isolation,
we present the results of an experiment that directly compares
the performance of OPAL with that of Doop [12] (RQ5) - a highly
optimized state-of-the-art tool for declarative Java points-to and
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call-graph analyses on top of the Soufflé [45] Datalog engine. Its
declarative approach assembles a fair comparison as it supports
similar modularity and configurability and good trade-offs between
pluggable precision/recall. Also, Doop’s and Soufflé’s authors re-
peatedly claimed its good performance [11, 12, 45, 71]. Specifically,
we compare our points-to based call-graph’s runtime from Sec-
tion 3.2 to Doop’s.

For better comparability, we disabled the reflection support in
both tools, because the respective approaches are different. The
applications were analyzed together with OpenJDK 1.7.0_75 (used
for the TamiFlex data in Doop’s benchmarks). Minor differences
(less then 5% difference in the number of RMs, except for eclipse
and xalan) remain, but these are in Doop’s favor, since they result
in more work to be done by OPAL6. Still, the sixth column of Ta-
ble 4 shows that our complete analysis, including all preprocessing,
is often faster than Doop’s analysis (9% in the geometric mean).
Further, Doop additionally requires time for rule compilation and
fact generation.

We used OPAL’s single-threaded implementation since it seems
that Doop is hardly parallelized (fact generation was done with 128
threads, but did not significantly vary with other values for the
fact-gen-cores parameter and the souffle-jobs parameter did
not show any effects). Using a parallel version, OPAL should be
able to outperform Doop even more as shown in Section 5.3.

� Despite being more general, i.e., not tuned for points-to analyses

but supporting many different kinds of analyses, OPAL clearly

outperforms Doop.

6 RELATED WORK

In this section, we discuss several related approaches in various
areas of static analysis as well as in blackboard systems.

6.1 Blackboard Systems

The blackboard metaphor was introduced by Newell [58] and im-
plemented for speech-recognition in HEARSAY-II [31]. Blackboard
systems were used for image recognition [54], vessel identifica-
tion [61], or industrial process control [25]. For these domains, no
efficient, deterministic algorithm is known, leading to several prob-
lems mentioned by Buschmann et al. [14]: nondeterminism making
testing difficult, no guarantee for good solutions, performance suf-
fering from wrong hypotheses, and high development effort due to
ill-defined domains. As static analyses have a well-defined domain
and deterministic algorithms, these do not apply to our approach.

The structure of blackboard systems is described, e.g., by Nii [60],
Craig [21], and Corkill [17]. Corkill also discusses concurrent execu-
tion of knowledge sources and the control component [16], similar
to OPAL. OPAL resembles a more modern interpretation of black-
board systems [22]: its blackboard is not hierarchical and analyses
may keep state between activations. Information is, however, never
erased and all communication is done via the blackboard.

Brogi and Ciancarini used the blackboard approach to provide
concurrency for their Shared Prolog language [13]. Like static anal-
yses, this domain is well-defined. Their knowledge sources are

6For instance, OPAL does handle some cases of reflection more soundly even with
reflection handling disabled in order to process the DaCapo benchmark correctly.

restricted to be Prolog logical programs, while OPAL’s analyses can
be implemented in a way best suited to the analysis needs.

Decker et al. [24] discuss the importance of heuristics for sched-
uling concurrent knowledge source activations. Focusing on static
analyses and well-defined dependency relations, OPAL provides
good general heuristics which are agnostic to individual analyses.

6.2 Abstract Interpretation

Cousot et al. [19] have proven that multiple (possibly cheap) ab-
stract domains (i.e., analyses) can be combined using the reduced
product to increase overall precision. In abstract interpreters, such
as Astrée [20] or Clousot [32], dependencies between domains are
restricted by the execution order. Thus, the same program state-
ment must be analyzed multiple times which is superfluous with
OPAL’s explicit dependency management. Also, abstract interpre-
tation typically aims to compute abstract approximations [18] of
concrete values, such as an integer variable’s value. OPAL further
allows natural expression of analyses on all granularity levels. Kei-
del et al. [47, 48] provide modular and reusable abstract semantics
for different language features allowing soundness proofs from
composition of already sound components. The analyses again ap-
proximate single concrete program values. OPAL supports analyses
to be based on abstract interpretation and includes such analyses,
but generalizes to a much broader range of static analyses.

6.3 Declarative Analyses Using Datalog

Datalog is often used to implement static analyses in a strictly
declarative fashion [27, 35, 51, 67, 77, 78]. Properties are represented
as relations and rules specify how to compute them. This enables
modularization, as rules can be easily exchanged and/or added (e.g.
for new language features). The Doop [12] framework, building
on top of the highly optimized Datalog solver Soufflé [45], has
shown that the rule-based approach enables precise and scalable
points-to analyses. For this reason, Doop became the state-of-the-
art for such analyses [46, 70, 72, 74, 75]. Datalog-based frameworks,
however, are limited in their expressiveness by using relations, i.e.,
set-based abstractions, to represent all analysis results. OPAL’s
approach combining imperative and declarative features provides
similar benefits as Datalog-based approaches, while allowing for
more expressive ways to represent data and to implement analyses.

Datalog’s limitation to relations has also been pointed out by
Madsen et al. [56]. They propose Flix to overcome this using a lan-
guage inspired by Datalog and Scala to specify declarative pluggable
analyses using arbitrary lattices as in OPAL. However, Flix focuses
on verifying soundness and safety properties of static analyses and
not on performance. For instance, Flix does not allow optimized
data structures or scheduling strategies. We wanted to compare our
approach against Flix and contacted the authors, but they answered
that their IFDS implementation is dysfunctional now and suggested
comparing against Doop with the Soufflé engine, which we did in
Section 5.5. Szabó et al. [73] also extend Datalog to allow arbitrary
lattices for static analysis. Their solver IncA focuses on incremen-
talization. OPAL allows optimizations, e.g., of used data structures
or scheduling strategies. Furthermore, analyses’ coarser granularity
compared to individual rules reduces overhead in parallelization.
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6.4 Attribute Grammars

Attribute grammars [49] used in compilers such as JastAdd [30]
enable modular inference of program properties by adding compu-
tation rules to the nodes of a program’s abstract syntax tree (AST).
In traditional attribute grammars, attributes may only depend on
parent, sibling, and child nodes. Circular reference attribute gram-
mars [33, 37, 44, 57] enable attributes to depend on arbitrary AST
nodes and allow circular dependencies. Still, analyses are tightly
bound to the AST, impeding natural expression of analyses based on
different structures, such as a control-flow graph. Similar to OPAL,
JastAdd enables pluggability for new language features. However,
JastAdd requires at least one attribute in a cyclic dependency to be
marked explicitly, while OPAL handles this transparently.

Öqvist and Hedin [62] proposed concurrent evaluation of low
complexity attributes in circular reference attribute grammars.
OPAL on the other hand supports arbitrary granularity of con-
current computation. OPAL’s explicit dependency management
enables analyses to drop dependencies and commit final results
early for improved performance. Finally, as memorization of prop-
erties is done in OPAL’s blackboard, temporary values are garbage
collected automatically, whereas JastAdd requires explicit removal.

6.5 Imperative Approaches and Parallelization

Lerner et al. [52] proposed modularly composed dataflow analyses
which communicate implicitly through optimizations of the ana-
lyzed code or explicitly through snooping. A fixed-point algorithm
repeatedly reanalyzes the code, while OPAL’s explicit dependencies
avoid reanalysis. They support only dataflow analyses, while OPAL
enables a wide range of analyses including dataflow analyses.

CPAchecker [5] is a tool for configurable software verification
and analysis. For any combination of analyses, CPAchecker requires
defining a compound analysis to integrate results of individual anal-
yses andmanage their interaction. For CPA+ [6], combined analyses
must work with the same domain and provide an explicit measure
of result precision. In contrast, OPAL enables tight interaction and
interleaved execution of independently-developed analyses without
requiring a compound analysis or explicit measure of precision.

Johnson et al. [43] present a framework for collaborative alias
analysis. Clients ask queries which are processed by a sequence of
analyses. Each analysis can answer the query or forward it to the
next one. Analyses can also generate additional (premise) queries.
To ensure termination, a complexity metric must be defined and
premises must be simpler than the queries they originate from.
Therefore, cyclic dependencies, required for optimal precision, and
results combined from different analyses are not supported.

Parallel execution of static analyses is performed by Magel-
lan [29]. In this framework, dependencies are given by the data
processed instead of explicitly by the analyses.

Haller et al. [36] concurrently execute tasks based on lattices
and apply this to static analysis. Their framework requires depen-
dencies to be managed fully by the client while OPAL manages
them automatically based on declarative specifications. In recent
work [39], we extended this approach to support mutable state and
found that exchangeable scheduling strategies significantly impact
performance. Both concepts are supported in OPAL.

7 THREATS TO VALIDITY

One threat to the validity of our evaluation is the use of the relatively
old and small DaCapo benchmark. It is, however, widely used to
evaluate Doop [12] and to compare other approaches with Doop [2,
3, 63, 74]. Doop’s special support for the benchmark makes it a
particularly fair evaluation set. Furthermore, our experiment design,
based on relative comparisons, should yield the same results with
any well-assembled benchmark.

Also, our results are threatened if our points-to analysis is not
sufficiently similar to Doop. To achieve comparability, we tailored
our points-to analysis to be as similar as possible, i.e., the call graph
derived from the points-to results should be almost identical. In
order to ensure this, we systematically studied Doop’s Datalog rules,
validated the resulting call graphs using Judge [65] and manually
inspected points-to sets from deviating call graphs.

8 CONCLUSION

We presented a novel approach for modular collaborative static
analyses implemented in the OPAL framework. Like with declara-
tive frameworks such as Doop, OPAL’s analyses, while developed
in isolation, can be easily composed to complex analyses by col-
laboratively computing results during interleaved executions. Sub-
analyses can be reused in various complex analyses and one can
easily exchange sub-analyses of a complex analysis for fine-tuning
precision, sound(i)ness, and performance.

But, instead of relying on a general-purpose solver, OPAL com-
bines imperative and declarative features to overcome limitations
of fully declarative frameworks. Individual analyses can be imple-
mented in imperative style making use of whatever data structures
and implementation strategies are appropriate for their specific
needs. Interdependencies and other characteristics important for
guiding their interleaved execution are declaratively specified and
automatically managed by a custom solver resembling a blackboard
architecture. Due to its approach, OPAL (a) is more general in terms
of the analyses supported - it is in particular the first framework to
explicitly support lazy collaboration of optimistic and pessimistic
analyses - and (b) enables analysis-specific optimizations, which
lead to outperforming state-of-the-art declarative analyses.

We plan to explore several further research questions in the
future. First, our evaluation suggests that better parallelization
strategies for OPAL are needed. Second, we plan to explore fur-
ther scheduling strategies, both general and analysis specific, e.g.,
strategies that abort computations whose results are no longer of
interest, or strategies (as well as analyses) that adapt their behav-
ior during the execution to increase performance with minimal
impact on precision and/or soundness. Last but not least, we will
develop a formal model of OPAL and formally prove its properties.
For instance, we believe that OPAL’s design enables compositional
soundness proofs [47, 48] - this needs to be proved in the future.
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