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ABSTRACT
Call graphs are widely used; in particular for advanced control- and
data-ow analyses. Even though many call graph algorithms with
dierent precision and scalability properties have been proposed,
a comprehensive understanding of sources of unsoundness, their
relevance, and the capabilities of existing call graph algorithms in
this respect is missing.

To address this problem, we propose Judge, a toolchain that
helps with understanding sources of unsoundness and improving
the soundness of call graphs. In several experiments, we use Judge
and an extensive test suite related to sources of unsoundness to
(a) compute capability proles for call graph implementations of
Soot, WALA, DOOP, and OPAL, (b) to determine the prevalence of
language features and APIs that aect soundness in modern Java
Bytecode, (c) to compare the call graphs of Soot, WALA, DOOP,
and OPAL – highlighting important dierences in their implemen-
tations, and (d) to evaluate the necessary eort to achieve project-
specic reasonable sound call graphs.

We show that soundness-relevant features/APIs are frequently
used and that support for them diers vastly, up to the point where
comparing call graphs computed by the same base algorithms (e.g.,
RTA) but dierent frameworks is bogus. We also show that Judge
can support users in establishing the soundness of call graphs with
reasonable eort.

CCS CONCEPTS
• General and reference → Evaluation; • Software and its en-
gineering→ Polymorphism.

KEYWORDS
call graph construction, static analysis, soundness

1 INTRODUCTION
Call graphs (CG) are the foundation of inter-procedural analyses
and many algorithms for constructing CGs exist [3, 4, 8, 12, 33,
36, 42, 45]. The focus of that research has mainly been on preci-
sion and/or scalability [19, 23, 45], thereby often covering only
standard (non-)virtual method calls. Other (problematic) language
features, e.g., Serialization or Java’s reection API, are ignored; the
developers deliberately accept so-called soundy [28] CGs.

One reason for deliberately accepting unsoundness is the trade-
o between soundness and precision/scalability. Another potential
reason is the trade-o between the development costs for support-
ing such language features or specic APIs and the perceived value
of doing so. In the end their support is only relevant if they are used
in applications. For example, support for Java 7’s invokedynamic

only became relevant after Java 8. The latter’s lambda expressions
are compiled using invokedynamic instructions.

Given that all CG algorithms are soundy to varying degrees, the
question is, how to assess their capabilities in practice? What is
the impact of soundiness when analyzing real applications? The
question is highly relevant, since the occurrence of the ignored
features in real software can have a devastating impact on the con-
structed CGs. This impact depends on the locations of uncovered
language features in the project and, hence, is best assessed in a
project-specic way. For instance, Xalan’s main method uses reec-
tion in combination with system properties. An implementation
of, e.g., Rapid Type Analysis (RTA) [8] that does not cover these
features would only contain calls to the reection API; missing
the application methods. As a result, the CG would reach only a
fraction of the methods it should actually reach.

A second question is, how do existing static analysis frameworks
(Soot [46], WALA [21], DOOP [37], and OPAL [15]) compare in
terms of costs and capabilities of their CG algorithms? The question
is relevant when deciding which algorithms to use, especially, since
preliminary studies [30, 35] have shown that CG implementations
vary more widely than expected. The study presented in Sec. 4
of this paper reveals that due to dierences in implementation
decisions and set of supported features the RTA-based CGs of Soot,
WALA, and OPAL have between 3195 and 75817 reachable methods
(for XCorpus’ jasml), a factor of up to 23 times.

Unfortunately, we lack methods and tools to answer these ques-
tions in a systematic way. That is, we have analyses for software, but
we lack means for systematically analyzing these analyses, so as to
understand the capabilities of CG algorithm implementations w.r.t.
supported language features and core APIs and possible sources of
unsoundness when analyzing a specic application.

This understanding is a prerequisite to enable understanding and
reproducing the results of inter-procedural static analyses. Without
such an understanding, comparing static analyses building on top
of CGs computed by dierent frameworks is incoherent.

This paper contributes in two ways to advancing the state-of-
the-art.

First, we provide a toolchain, called Judge, for analyzing CG
algorithms with respect to the language features they cover in
both general terms as well as in a project-specic manner. Judge
uses a test suite to build proles of algorithms under investigation.
Given a prole and the features of an application for which we
want to construct the CG, Judge nds and documents sources of
unsoundness in the application.

Second, we use Judge to conduct a comprehensive study of the
capabilities of CGs constructed by Soot, WALA, DOOP, and OPAL.
More specically, we answer the following research questions:
(RQ1:)Which language and API features are used how frequently by
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which kind of code? (RQ2:) How do Soot, WALA, DOOP, and OPAL
compare to each other w.r.t. runtime costs and feature support?
(RQ3:) Which CG algorithms are suitable for a specic application
kind? (RQ4:) Given support for manually tuning the entry-points
considered by an algorithm, how much eort is necessary to in-
crease the soundness of a CG to an acceptable level.

We analyzed the top 50 Maven libraries, the XCorpus [13], the
top 15 Android projects and ve programs of each of the following
JVM hosted languages: Kotlin [16], Groovy [32], Clojure [20], and
Scala [24]. Not only does the study provide information about the
prevalence of the advanced features in the wild; it also can guide
the creation of benchmark suites for testing CG algorithms. For
example, we observe that the usage of advanced features that aect
the soundness of the CGs diers signicantly when comparing the
XCorpus with the current top 50 libraries found on Maven; the
latter makes use of more features and also use those features that
are found in both corpora more frequently.

The remainder of the paper is organized as follows. Section 2
presents Judge. Section 3 shortly presents the test suite. Our study
is presented in section 4. Related work is discussed in section 5 and
the paper is concluded in section 6.

2 EVALUATION TOOLCHAIN
Figure 1 depicts the building blocks and the workow of Judge for
analyzing CG algorithms. Judge’s input is (a) a test suite comprising
a test case for each language feature with respect to which we want
to analyze the soundness of the CG algorithms under investigation
and (b) a project for which we want to investigate the project-
specic unsoundness of CG algorithms.

The upper part runs all CG algorithms on the test suite and
computes proles reporting whether the algorithms passes the tests
or not. The lower part of the workow computes the CG for the
input project with dierent algorithms and in parallel evaluates
the prevalence of the features under investigation in the project
code. Given the CG of a project P constructed by algorithm AL,
the occurrence of the features FSET under investigation in P ’s
code, FSET , and the AL’s prole, Judge reports potential sources of
unsoundness of AL in P ’s CG.

2.1 Call Graph Algorithm Proles
Judge supports the analysis of the various CG algorithms oered
by the frameworks: 4xWALA, 4xSoot, 1xDOOP, and 1xOPAL. The
approach’s rst part (Steps 0, 1, and 2 in Figure 1) computes for
each algorithm a prole which lists for each considered language
feature whether it is supported or not.

To construct the prole, the approach uses CG test cases, each
testing one specic feature that is relevant when constructing CGs.
A test case consists of a minimal, executable program that uses
the feature and Java annotations that specify the expected edges.
Depending on the test case, we either specify a specic call edge
or an indirect call. For instance, the test case for the resolution of
trivial reective calls contains a minimal, executable program that
performs a reective call, where the String that identies the call
target is directly specied. Here, the annotation species an indirect
call target—we only expect that the target method is eventually
called, i.e., the CG does not have to (but may) contain a direct edge

Table 1: Overview of the Test Suite.

Category Abbreviation # Test Cases

Classloading CL 4
Dynamic Proxies DP 1
Interface Default Methods J8DIM 6
Static Interface Methods J8SIM 1
Java 8 invokedynamics MR/Lambda 11
JVM Calls JVMC 5
Library Analysis LIB 5
Trivial Reection TR 9
Locally Resolveable Reection LRR 3
Context-sensitive Reection CSR 4
Method Handles MH 9
Class.forname Exceptions CFNE 4
Non-virtual Calls NVC 6
Serialization Ser 9
Externalizable ExtSer 3
Lambda Serialization LamSer 2
Signature Polymorphic Methods SPM 7
Static Initializers SI 8
TYPES - 6
Unsafe - 7
Virtual Calls VC 4
Java 9/10 Features J9+ 2
Non-Java Bytecode NJB 6

Total 122

from the call site of the reective call to the method invoked nally.
Test cases related to standard mono-/polymorphic calls, on the
other hand, specify the expected (direct) call edge.

There are two classes of test cases. The rst class consists of basic
test cases that can be created using Java code. These are dened in
markdown les (.md) that contain a high-level description of the
test case along with the source code.

The second class consists of test cases that cannot be generated
by the Java 8 compiler. These Advanced Test Cases (cf. Figure 1) are
manually compiled using another compiler (e.g. Java 10 or Scala),
created via bytecode engineering, or by replaying code evolution
scenarios. The study of the JVMSpec led us to test cases that repre-
sent valid bytecode but cannot be generated by the Java compiler.
For example, the JVM supports so-called MethodHandle Constants
which are primarily intended to be used by other JVM-hosted lan-
guages. Furthermore, due to code evolution it may happen that an
interface SuperI denes a default instance method m and its subin-
terface SubI a corresponding static method m. That is, both methods
have the exact same signature and only dier in the access modier
(e.g., static). Such bytecode is legal and works reliably, but cannot
be created using Java source code.

Overall, we dene 122 test cases and, therefore, investigate 122
features which we grouped in 23 categories (cf. Table 1).

The prole constructions works as follows. We parse and extract
the respective test cases and then compile them (Step 0). Given the
set of all tests cases—which includes the advanced test cases—and
using one .jar per test case, we run all 10 CG algorithms for each
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Figure 1: Call Graph Analysis Toolchain—Judge.

test case (Step 1) and then check if the CG algorithm supports the re-
spective feature (Step 2). The latter parses the test jars’ annotations
and checks for each found annotation whether the CG contains the
respective edge.

2.2 Querying for Features
To understand the prevalence of features aecting the soundness
of CGs (cf. Step 3/blue area in Figure 1), Judge uses Hermes [34].
The latter executes code queries against a large code base and then
produces reports on the queries’ ndings.

Each query is an analysis that checks if a specic feature is found
in a given code base. The result is a report that lists the locations
(in terms of the instructions’ program counters) that use a feature
along with the Hermes feature id.

We developed Hermes queries to derive Hermes features that
map all test case ids to Hermes feature ids. All queries perform a
most-conservative intra-procedural analysis. Ergo, test cases that
require an inter-procedural analysis, e.g., test cases related to re-
ective calls that test if a framework is able to track strings across
method call boundaries to (soundly and precisely) resolve reective
call targets, are only partially covered. Writing queries for these
test cases would be subject to false positives and false negatives; the
query would require information about the ow of strings in the
application and no such analysis exists that is sound and precise.
Therefore, it would be impossible to use those queries to reliably
identify code locations that are sources of unsoundness.

However, for these test cases we write queries that determine
that the local analysis is inconclusive and then ag the method
accordingly. Such queries often handle multiple test cases by re-
porting that a nding belongs to one of multiple test cases, i.e.,
the query reports an id consisting of all test cases the nding may
matches. For example, test cases of context-sensitive reection are

grouped because the query cannot distinguish where the method’s
parameter originates from.

Hence, the queries only derive 107 features for 122 test cases.
Altogether, we developed 15 queries for Hermes.

2.3 Project-specic Call Graph Analysis
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Figure 2: Project-specic call graph matching.

For the project-specic evaluation of an algorithm, we compute
its CG for the project (Step 4 in Figure 1). Additionally, we use
Hermes to nd the locations of all features that may aect the
soundness (Step 3 in Figure 1). Finally, the computed CG is used
to determine all reachable methods that use unsupported features
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(Step 5 in Figure 1). This enables the identication of the initial
sources of unsoundness.1

Figure 2 illustrates the project-specic assessment of a CG al-
gorithm. The rst two columns are project agnostic and represent
the CG algorithm’s prole: the rst one lists Hermes’ features ids
(which map to the respective test cases); the second one identies a
feature as being supported or not. Columns three to six are project
specic: Column three (Extensions Count) shows how often a fea-
ture was found by the respective Hermes query—in our case, the
project contained three polymorphic calls, two reective calls, one
Java invokedynmic instruction, and zero Scala invokedynamics. The
fourth column represents the mapping between the occurrences of
a feature (column 3) and its locations/methods (column 5). Finally,
column six shows whether the methods where the features were
found are reachable from the constructed CG—i.e., are an immediate
source of unsoundness—or not.

With respect to the reection usage of method my, we make two
observations: 1) the CG algorithm does not support the resolution
of reective method calls and 2) method my is already reachable.
Hence, this reection usage inmy is a source of unsoundness because
it knowingly leads to missing call edges. The reective usage in
method m2 is—in contrast—not reachable according to the current
CG and is so far a conditional source of unsoundness; i.e., it would
be another source of unsoundness if the method would be reached.
In other words, conditional sources of unsoundness are potentially
relevant because the impact of known unsoundly handled features
on the constructed CG remains unknown.

3 TEST SUITE
In the following, we discuss our test suite by rst giving a high-
level overview of the test categories (cf. Table 12) before we discuss
individual test cases.

3.1 Test Categories
Classloading: Using a java.lang.ClassLoader it is possible to load
and use a specic class in multiple (incompatible) versions. Direct
Calls: Non-virtual method calls, i.e., constructor calls, super calls,
private method calls and static method calls. Dynamic Proxies:
Java’s Dynamic Proxy API creates (via runtime bytecode engineer-
ing) type safe proxy classes which will then forward the calls—
using Java reection—to a previously specied handler class. Java
8 Polymorphic Calls: Java 8 added the possibility to dene con-
crete instance and static methods in interfaces. JVM Calls: Calls of
those methods that are (only) done by the JVM due to some event,
such as calling start on a Thread. In that case the JVM will even-
tually call the Thread’s run method. Lambdas and Method Ref-
erences: Lambda and method reference (e.g., String::length) based
invocations (as introduced with Java 8). Library Analysis: As
discussed in [33], the target of a method call in a library may re-
quire call-by-signature resolution when computing CGs just for
the library. Polymorphic Calls: Virtual (interface) method calls
as already available before Java 8. Trivial Reection: Usage of
the classical reection API (java.lang.reect.∗) where the call target

1Sources of unsoundness are always only potential sources of unsoundness because
we do not check whether the instructions themselves are reachable.
2The test suite is published along Judge: https://bitbucket.org/delors/jcg/.

is immediately available (e.g., Class.forName("XYZ")). Locally Re-
solvable Reection: Usage of the classical reection API where
an intra-procedural control-/data-ow analysis is required to re-
solve the call targets. Context-sensitive Reection: Usage of the
classical reection API where an inter-procedural control-/data-
ow analysis is required to resolve the call targets.Method Han-
dles: Reective calls using the java.lang.invoke.∗ APIs and Java 7’s
MethodHandle API. Serialization: When objects are (de)serialized,
the JVM will call the respective (de)serialization methods. Signa-
ture PolymorphicMethods: Signature polymorphic method calls
w.r.t. java.lang.MethodHandle’s invoke and invoke-Exact methods [18]
(In these cases the method descriptor used at the call site does not
have to match the signature of the called method). Static Initializ-
ers: When a class is used for the rst time, its static initializer will
be invoked by the JVM. Types: Type casts and instanceof checks
can be performed using language features or using java.lang.Class’
API. Unsafe: Using Java’s sun.misc.Unsafe API [29] direct memory
manipulations using Java-level code is possible. Java 9/10: Features
added with 9 and 10, such as private interface methods. Non-Java
Bytecode: Legal JVM bytecode that cannot be created using Java,
but which was added to the JVM to support other JVM hosted
languages such as Clojure, Groovy, Kotlin, or Scala.

3.2 Custom Native methods
We did not add explicit test cases related to custom native methods
because none of the frameworks support cross-language analyses.
Nevertheless, we developed a Hermes query to nd respective calls
and (always) ag them as potential sources of unsoundness.

3.3 Test Case Design
For systematically designing the test suite, we studied the Java
Virtual Machine Specication (JVMSpec) [18] and the Java core
APIs (java.∗). When designing the test cases, we tried to ensure that
a test case will only succeed if the algorithm explicitly supports
the respective feature. This is, however, not possible in all cases;
some test cases are simply supported due to an algorithm’s inherent
imprecision. For example, some of the test cases related to Type
Narrowing or the Unsafe API just manipulate references and can
therefore negatively aect soundness in those algorithms that are
points-to information based. If those algorithms do not model the
eects of, e.g., the Unsafe API, the points-to information will be
incorrect—potentially leading to unsound results. CG algorithms,
such as Class-Hierarchy Analysis (CHA), that just rely on the type
information found in the bytecode handle related scenarios in a
sound manner; they just assume all subclasses.

4 THE STUDY
We perform four experiments to answer our research questions:
(RQ1) how prevalent are the language and API features; (RQ2) how
do the frameworks compare to each other; (RQ3) which framework
is best suited for which kind of code base; (RQ4) how much eort
is necessary to get a sound call graph.

4.1 Setup
All measurements are done using WALA 1.5.0, Soot 3.1.0, OPAL’s
develop branch [2], and DOOP’s master branch [1]. FromWALAwe

https://bitbucket.org/delors/jcg/
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use the following algorithms:WALARTA,WALA0-CFA,WALAN-CFA
3,

WALA0-1-CFA—all conguredwith the FULL reection option.WALA
requires to specify packages to be excluded from the analysis. For
the comparative analysis (Experiment 2 (see 4.3)) we excluded no
package, whereas for the experiment related to RQ3 we use the pre-
dened Java60RegressionExclusions to ensure termination. For all
Soot call graphs (SootCHA, SootRTA, SootVTA, and SootSPARK [26])
we use the options: safe-forname and safe-newinstance. This options
make Soot consider all types as instantiated when Class.forName
or Class.newInstance is used. We could not use types-for-invoke due
exceptions being thrown [41]. Furthermore, we use include-all to
ensure that no packages are ltered. Our library test cases are addi-
tionally started with library:signature-resolution and all-reachable
to make use of Soot’s capabilities to analyze library code. DOOPCI’s
call graph is set to be context-insensitive with classical-reection
turned on. For OPALRTA, we use the standard conguration.

All test cases w.r.t. libraries are started with the respective library
entry points. We perform all experiments on a server with two Intel
Xeon E5-2620 CPUs and 64GB RAM.

4.2 Experiment 1
Our corpus for analyzing the prevalence of language and API fea-
tures (RQ1) includes the XCorpus [13], the top 50 libraries from
Maven Central [31] (from July 2018), the top 15 apps from Google’s
Playstore (from January 2018), plus ve Clojure [20], Groovy [32],
Kotlin [16], and Scala [24] projects.

Table 2 visualizes the results using a heatmap. It shows the
relative frequency of each feature (cf. Feature column) within each
corpus. We include the OpenJDK column as a separate corpus
because most corpus projects are built upon it and, hence, partially
use its features. A feature’s relative frequency is color coded using a
logarithmic scale as shown in the legend of Table 2. Slightly yellow
boxes (�) identify unused features and red boxes (�) those found
in ≥ 5% of all methods; we chose 5% because only 7 features occur
in more than 5% of all methods. Features used in no corpus (e.g.,
Groovy invokedynamics, or the serialization of lambdas) and always
soundly resolved features (e.g., standard poly-/monomorphic call)
are not included.
�All the API and language features supported by Java up to version
7 are used widely across all code bases.
The most frequently used feature that was introduced with Java

≥ 8 is the call of static interface methods (J8DIM6). 12% of all
methods of the top 50 Maven projects use them; Scalatest [22] is
responsible for ≈ 90% of all uses. Clojure and Android code have
not yet adapted Java 8 call semantics. Other Java 8 features, e.g.,
MethodHandle constants, are rarely used; primarily by the Nashorn
library.

� Support for Java 8 is a must, given the frequent use of Java 8 call
semantics features in modern code (J8DIMX), unless one analyzes
only Android or Clojure code.

Serialization-related functionality (Ser3-7,9, ExtSer) and Java’s
Reection API (cf. TR, LRR, CSR) are both used with medium fre-
quencies; also in modern code.

3We use N=1 throughout the whole evaluation.

Table 2: Feature Prevalence across dierent corpora.
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� Supporting classical Reection and Serialization is strongly rec-
ommended, independent of the source code’s age.

Many features (e.g., method references MR), Java’s MethodHan-
dle API (MH ), native methods (cf. native), or Java’s Unsafe API (cf.
Unsafe3-7 ) occur with varying frequency and not in all corpora.

� Support for many features is only required in specic scenarios.

� The distribution of the feature usage is very dierent for the
XCorpus when compared to the JDK 8 and/or the other corpora,
therefore its representativeness for evaluating CG construction al-
gorithms is limited. In particular, the usage of the Lambdas and the
MethodHandle API increases, when we compare its usage frequency
in the XCorpus vs. the top 50 Maven libraries.

4.3 Experiment 2
In this experiment we compare dierent CG algorithms. We rst
compute each algorithm’s feature prole. Next, we construct the
CGs for ve XCorpus projects (jasml, javacc, jext, ProGuard, and
sablecc) to assess the CGs size and construction times. We select
these projects because they all have (I) well-dened main classes,
and (II) can be processed by at least one CG algorithm of each frame-
work. We run all CG generators once on all ve projects including
the Java Runtime Environment 1.6_30 from DOOP’s benchmark
project [38]. The later is chosen to attain comparability w.r.t. the
runtime; we set a timeout to 90 minutes.

Computing Call Graph Algorithm Profiles. Table 3 summarizes the
computed algorithm proles. The rst column shows the test cate-
gories. Columns two to ten show for each test category the individ-
ual test results per CG algorithm. A cell’s symbol indicates whether
all ( ), some (G#), or none (#) of the tests succeeded; the numbers
represent the number of succeeded vs. all tests.

Table 3 shows that basic language features like static initializers
(SI ), (non-)virtual calls ((N)VC), and type casts (TYPES) are well
supported. Except of two static initializer cases: the rst one is
not supported by SootSPARK, DOOPCI, and WALA and the second
one is not supported in WALA. SI4 models a case when a Java 8’s
interface’s static initializer must be called. An unexpected behavior
is shown by WALAN-CFA. It can only handle type casts that are
performed using Java’s explicit cast and instanceof APIs, but does
not support built-in operators, i.e., instanceof or type casts of the
form (String)o;.

Serialization-related methods (Ser) are not well supported by
WALA and DOOP, are slightly better supported by SOOT and
are best supported by OPAL (≈ 50%). The methods (in particular:
readObject and writeObject—which will be called by the JVM) must
be considered when object (de-)serialization occurs in reachable
Methods.

Java 8 language features, such as default methods (J8DIM), lamb-
das, and method references (MR) are mostly correctly handled by
WALA and OPAL but not supported by Soot and DOOP. Further-
more, OPAL is the only framework that supports the new method
handle API (MH ) and signature polymorphic methods (SPM).

As Table 3 shows, support for Java’s reectionAPI varies, but all—
except of WALAN-CFA—provide at least some support. Moreover,
Soot’s reection options enable it to resolve all advanced reection
test cases (LRR and CSR); calls to Class.newInstance are resolved to
all initializers in the project.

Table 3 shows that only the basic algorithms: SootCHA, SootRTA,
WALARTA, and OPALRTA support Java’s Unsafe API as well as the
Dynamic Proxy API. Here, the imprecision of CHA/RTA benets
the support of those two APIs.

Only OPAL supports non-Java bytecode (NJB) and Java 9/10
features (J9+).

Performance Comparison. The performance results are shown in
Table 4. Column one lists the project, column two gives the number
of all methods including the JDK and column three the number of
project methods. The remaining columns list for each CG algorithm
the number of reached methods and the GG’s construction times
for each algorithm.

OPAL is the fastest framework; All of WALA’s context-sensitive
CGs timed out; DOOP’s has the slowest call graph generator that n-
ished in time, followed by WALARTAand Soot. The CG constructed
by RTA algorithms of Soot, WALA, and OPAL vary extremely. This
is partially due to the dierent handling of basic virtual methods
calls which all handle sound, but with very dierent precision.
Other reasons are the supported features as well as the dierent
usage of cast information.

1 Collection c1 = new LinkedList();
2 Collection c2;
3 if(cond){ c2 = new ArrayList(); } else { c2 = new Vector(); }
4 c2.add(null); // Call site
5 Collection c3 = new HashSet();

Listing 1: Precision Example

Listing 1 explains part of the dierence. The three local variables
c1, c2, and c3 are assigned dierent subtypes of Collection, namely
LinkedList, ArrayList, Vector, and HashSet. The call on line 4 is then
resolved dierently. WALA considers all instantiated subtypes of
Collection. Soot computes an upper type bound for c2 and the call is
thus resolved to all subtypes of AbstractList. OPAL computes union
and intersection types and determines that c2 can either be an
ArrayList or a Vector. For this example, WALA would add four, Soot
three, and OPAL two call edges on Line 4.

� The last observation indicates that it does not make sense to
compare the results of static analyses that build upon CGs from
dierent frameworks, even if we use the implementations of the
same algorithm across frameworks.

In summary, all frameworks support dierent features and ex-
hibit dierent performance. OPAL is the most recent framework
and supports more of the recently added Java features and APIs
than the other frameworks. Advanced features for which solutions
were proposed in literature [11, 17, 39]—such as DOOP’s dynamic
proxy support—are not enabled by default. In addition, the per-
formance consequences from supporting rather hard-to-support
features [11, 28](e.g. context-sensitive reection)—which are gener-
ally not precisely supportable—are not well understood.
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Table 3: Support of language features and core APIs of Soot, WALA, OPAL, and DOOP’s call graphs.

Category SootCHA SootRTA SootVTA SootSPARK WALARTA WALA0-CFA WALAN-CFA WALA0-1-CFA OPALRTA DOOPCI

CL G# 4/6 G# 4/6 G# 4/6 G# 3/6 G# 4/6 G# 4/6 G# 2/6 G# 4/6 G# 4/6 G# 4/6
DP  1/1  1/1 # 0/1 # 0/1  1/1 # 0/1 # 0/1 # 0/1  1/1 # 0/1
J8DIM/J8SIM G# 3/7 G# 3/7 G# 3/7 G# 3/7  7/7  7/7  7/7  7/7  7/7 G# 3/7
MR/Lamdbas # 1/11 # 1/11 # 0/11 # 0/11  11/11 G# 10/11 G# 10/11 G# 10/11  11/11 # 1/11
JVMC G# 4/5 G# 4/5 G# 3/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5
LIB G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 1/5 G# 1/5 G# 1/5 G# 1/5 G# 2/5 # 0/5
TR G# 4/9 G# 4/9 G# 4/9 G# 4/9 G# 3/9 G# 6/9 # 0/9 G# 6/9  9/9 G# 3/9
LRR  3/3  3/3  3/3  3/3 # 0/3 # 0/3 # 0/3 # 0/3 G# 1/3 G# 2/3
CSR  4/4  4/4  4/4  4/4 # 0/4 # 0/4 # 0/4 # 0/4 G# 1/4 G# 0/4
MH G# 3/9 G# 3/9 G# 1/9 # 0/9 G# 2/9 # 0/9 # 0/9 # 0/9  9/9 G# 1/9
CFNE  4/4  4/4  4/4  4/4  4/4  4/4 G# 3/4  4/4  4/4  4/4
NVM  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4
Ser G# 1/9 G# 1/9 # 0/9 # 0/9 # 0/9 # 0/9 # 0/9 # 0/9 G# 5/9 # 0/9
ExtSer  3/3  3/3 G# 1/3 G# 1/3 G# 1/3 G# 1/3 G# 1/3 G# 1/3  3/3 G# 1/3
LamSer G# 1/2 G# 1/2 # 0/2 # 0/2 # 0/2 # 0/2 # 0/2 # 0/2 G# 1/2 # 0/2
SPM # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7  7/7 # 0/7
SI  8/8  8/8  8/8 G# 7/8 G# 7/8 G# 6/8 G# 6/8 G# 6/8  8/8 G# 7/8
TYPES  6/6  6/6  6/6  6/6  6/6  6/6 G# 2/6  6/6  6/6  6/6
Unsafe  7/7  7/7 # 0/7 # 0/7  7/7 # 0/7 # 0/7 # 0/7  7/7 G# 0/7
VC  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4
J9+ # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 # 0/3 G# 2/3 # 0/3
NJB # 0/6 # 0/6 # 0/6 # 0/6 G# 3/6 G# 3/6 G# 3/6 G# 3/6 G# 4/6 # 0/6

sum 67/122 67/122 51/122 47/122 67/122 65/122 56/122 58/122 102/122 42/122

Table 4: Comparison of algorithms w.r.t. call graph size and runtime.

Project #Methods SootCHA SootRTA SootVTA SootSPARK OPALRTA
all (incl. JDK) project #RM time #RM time #RM time #RM time #RM time

jasml 160 564 265 12 184 18 s 12 134 75 s 8 012 17 s 10 356 22 s 3 195 13 s
javacc 162 484 2 185 13 035 22 s 12 986 97 s 8 863 22 s 9 752 17 s 4 222 12 s
jext 163 569 3 270 34 604 97 s 34 470 697 s 20 259 97 s 20 605 73 s 15 705 15 s
proguard 165 797 5 498 36 425 84 s 36 256 647 s 20 928 100 s 28 912 136 s 7 771 11 s
sablecc 162 670 2 371 14 138 18 s 14 088 104 s 9 687 24 s 12 101 24 s 4 932 11 s

average 47.8 s 324 s 52 s 54.4 s 12.4 s

Project #Methods WALARTA WALA0-CFA WALAN-CFA WALA0-1-CFA DOOPCI
all (incl. JDK) project #RM time #RM time #RM time #RM time #RM time

jasml 160 564 265 75 817 362 s timed out timed out timed out 14 149 579 s
javacc 163 484 2 185 76 643 399 s timed out timed out timed out 14 952 618 s
jext 163 569 3 270 79 513 411 s timed out timed out timed out 27 194 1 698 s
proguard 165 797 5 498 80 240 465 s timed out timed out timed out 18 205 949 s
sablecc 162 670 2 371 77 607 460 s timed out timed out timed out 15 774 680 s

average 419.4 s - - - 904.8 s

� From the observations above, we conclude that it is not possible
to relate a CG’s feature completeness to its runtime costs and its
size. A CG’s suitability always needs to be analyzed in the context
of a specic problem (domain).

4.4 Experiment 3
We assess Judge’s suitability for project-specic evaluations using
XCorpus’ Xalan project. Xalan is a mid-sized project with a well-
dened main class, for which we were able to run all CG algorithms
within a 90 minutes limit.4 Xalan also uses features not handled by
any CG implementation.

4Please recall that we congured WALA to exclude several packages such that its
algorithms terminate.
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Table 5: Excerpt from the Project-specic Evaluation for Xalan.

Feature#Locations SootRTA SootVTA SootSPARK WALARTA WALA0-CFA OPALRTA DOOPCI
#M #M #RM time #RM time #RM time #RM time #RM time #RM time #RM time

16 389 251 239 58 560 2320s 28 248 322s 23 753 139s 15 343 15s 3 021 4s 6 834 22s 14 392 988s

Xalan JDK #RF #FS #RF #FS #RF #FS #RF #FS #RF #FS #RF #FS #RF #FS

TR2 28 288 25 # 10 # 7  7 # 1  1  2 #
Ser3 1 97 1 # 0 # 0 # 0 # 0 # 0 # 0 #
LRR1 2 84 15  10  10  2 # 1 # 1  11  
CSR1 38 176 49  34  31  20 # 6 # 4 # 7 #
JVMC4 2 23 4 # 3 # 5  2 # 0 # 0  0 #
J8PC1 81 9799 1165 # 450 # 396 # 236  42  221  316 #
Lambda1 0 621 30 # 14 # 14 # 5  0  3  1 #

M=methods; RM=reachable methods; RF=reachable features; FS=feature support;  indicates feature support and # an unsupported feature;

Table 5 shows an excerpt of the evaluation’s results. The column
#Locations shows whether a specic (un)used feature is prevalent
in Xalan or in the JDK. Furthermore, it shows for each CG algo-
rithm the reachable methods (#RM), its runtime, how many feature
locations are reachable within the call graph, and whether the
respective feature is supported.

Soot’s CG algorithms are the only ones that handle all context-
sensitive reection in a sound manner. This resulted in the biggest
call graphs whose computation also required much longer than
those of WALA and OPAL.

However, all CGs contain methods that use unsupported fea-
tures (#), i.e., miss edges and are thus unsound. Though, OPAL’s
CG reaches the least number of sources of unsoundness, we also
observe that OPAL’s CG only contains 49 (≈ 0.3%) methods from
Xalan. WALA’s RTA call graph in contrast touches ≈ 50% of all
methods. A detailed investigation using Judge, starting from the
identied sources of unsoundness, reveals that this is due to a single
unsupported feature related to Java reection. The cause is a helper
method (ndProviderClass(...)) in Xalan’s ObjectFactory—it expects a
class name as a parameter and loads the class via reection. Soot
and WALA are congured to act conservatively and, therefore, con-
sider all available classes as instantiable when a Class.newInstance
call is performed. As result, they add a call edge to all class’ con-
structors which enables them to reach a large portion of methods
within Xalan but also introduces a large amount of imprecision; as
a manual analysis revealed.

� The experiment shows that even for mid-sized programs, such as
Xalan, CGs contain methods that use unsupported features and are
thus unsound. Unsupported features can have a devastating eect
as OPAL’s poor coverage of Xalan demonstrates.

4.5 Experiment 4
The experiments so far investigated the level of unsoundness of
CGs due to incomplete feature/API coverage by CG construction
algorithms. Whether unsoundness is tolerable or not depends on
the use case. In this experiment, we consider use cases, where un-
soundness cannot be tolerated, or, at least, needs to be minimized.
An example for such a use case is vulnerability analysis. To cover

such use cases, OPAL provides a mechanism for manually spec-
ifying entry points that are taken into consideration by the call
graph algorithm. This mechanism can be used together with Judge,
which provides assistance with analysing reachable methods that
use unsupported features/APIs to understand the expected eect
on the CG.

The goal of the experiment is to get an intuition of the eort
needed to manually turn an unsound CG to a reasonably sound
one. The subject was Xalan’s CG produced by OPALRTA, which is
unsound due to incomplete coverage of the reection API. OPALRTA
is used as it is most feature complete (cf. Table 3), hence, we expect to
minimize the manual eort. What reasonably sound means depends
in general on the use case. In this experiment, we consider a CG
as being reasonably sound if it contains at least all results also
found by dynamic analyses. We perform two dynamic analyses:
(a) JVM proling to log which methods are executed and (b) the
dynamic analysis tool Tamiex [11] for resolving reective calls
to record dynamic edges. Whereas we use the JVM proling to
check whether all executed methods are reachable in the CG, we
use Tamiex to examine whether the CG includes all reective call
edges that have been reported. Hence, when the CG contains both,
we consider it reasonably sound. We prole Xalan using exemplary
input and Tamiex to record call targets of reective calls and
then iteratively use Judge along with OPALRTA’s mechanism to
congure additional entry-point methods and types that must be
considered as instantiated by the CG algorithm5. This way, we
increase soundness manually step by step.

The initial CG covered 30% of all methods reported by a pro-
ling run using exemplary input. None of the methods reported
by TamiFlex were included. The analysis took ≈ 1, 5 hours and
required to analyze 10 reective call sites, congure 17 types as
instantiable, and conguring 50 additional entry points. As a result,
the CG covered 121 of 198 methods reported by TamiFlex. The
remaining methods are related to code that is generated at runtime.
Furthermore, the CG covered 1500 of 1653 methods (≈ 91%) when
compared to the prole run; all non-reachable methods belong to
the JDK. At this state, we consider the CG reasonably sound.

5The conguration of instantiated types is required since we are using a RTA CG
which does not capture reectively instantiated types.
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� The experiment indicates that the eort involved in manually
increasing the soundness of CGs is high even for mid-sized projects
and despite good tool support, i.e., manual correction is not proper
compensation for better algorithms that automatically construct
sound CGs.

4.6 Discussion
In the following, we summarize the implications of our study for
both developers of CG implementations and static analysis re-
searchers that use the latter. Thereby we highlight, how Judge
helps them to make more informed decisions, to reason about po-
tential limitations of their tools and the root causes thereof, and
to set up empirical evaluations and ensure reproducibility of their
results.

Implications for Framework Developers. Obviously, our experi-
ments indicate that research on constructing high quality and prac-
tically useful CGs is still needed. We need new implementations
that soundly cover features that are prevalent in real software, e.g.,
Java 8 call semantics. Furthermore, the implementations should
support users in manually adjusting implementations and/or CGs,
e.g., to integrate manually-dened parts of the graph in a project-
specic way to handle encounters of unsupported features. Such
a mechanism can help increase the soundness. So, users can spec-
ify call edges that solve the most signicant soundness/precision
issues.

Judge and our comprehensive test suite can be useful for imple-
mentors of CG construction algorithms in several ways. It helps
guring out wheremanual adjustments of the CG are needed.When
implementing new or extending existing CG algorithms it helps
investigating the usage of unsupported features/APIs in practice.
Judge can also help to create representative benchmark suites w.r.t.
their used API/language features, which enables well-founded re-
search that (in)directly relies on CG algorithms.What is still missing
and needed, however, is support for understanding design decisions
pertaining to precision. It is, in any case, important that every CG
algorithm implementation documents its design decisions w.r.t. to
approximations and optimizations. Finally, given that the JVM, the
Java language, and its bytecode keep evolving, our comprehensive
test suite can be very useful as a regression test suite, which can be
continuously enriched with new test cases for further domains/APIs
that eect a CG’s soundness by us or by users.

Implications for Static Analysis Researchers. The results of our
study directly inform developers of client analyses if a framework
suits their specic needs. Soot and DOOP can be used to analyze
Android code as their feature proles match well the feature prole
of this domain, while OPAL and WALA support analyses targeting
Java 8 applications. In any case, researchers developing new static
analysis tools/frameworks, should clearly specify the employed CG
implementation, in order to increase reproducibility of their results.

Judge is useful for static analysis researchers, too. It can be used
to systematically evaluate CG implementations w.r.t. their suitabil-
ity to serve as a foundations for building analyses for a certain
application (class), as it can provide an overview of the (prevalence
of) features that are used in that application (class), so as to pick

the most sound CG for the specic needs. Even OPAL’s broad fea-
ture/API support may be insucient, if unsupported features, e.g.,
CSR, are used in the target applications. Knowing where the CG is
unsound enables static analysis writers to understand whether a
false negative originates from an unsound CG or is a problem of
the analysis.

4.7 Threats to Validity
Internal threats to validity are the usage of incorrect test cases
and/or Hermes queries. In that case, we may fail to identify the pres-
ence of language features/APIs that potentially cause unsoundness.
To mitigate this threat, we thoroughly reviewed all our test cases
and added a built-in verier that checks if a test case is correctly
annotated. In addition, the test cases and queries were developed
by researchers with many years of experience in doing Java-based
static analyses and were cross-checked by two further authors. A
related threat is that we missed language and API features. To miti-
gate this threat, the implementations of the analyzed frameworks
were studied carefully w.r.t. supported features. Furthermore, one
author was responsible for constructing Java CG algorithms as part
of his professional career and a second author has developed Java
bytecode analyses for more than 15 years. Hence, the likelihood
that we missed features is low.

An external threat is the usage of a non-representative corpus
of programs. Our study has shown that an established corpus such
as XCorpus is not representative for modern Java code, as it does
not contain usages for many relevant features. Other established
corpora, e.g., Qualitas, DaCapo, etc. are even older than the XCorpus.
Therefore, we used 7 dierent corpora of reasonable sizes.

5 RELATEDWORK
5.1 Call Graph Comparison
In earlier work [34, 35] we proposed an approach to compare CG
implementations w.r.t. their support for features that aect the
soundness of the computed CGs. We reuse and extend our basic
infrastructure to facilitate the described experiments. Moreover,
compared to our previous work, we make multiple contributions.
First, we make an extensive study of Java features that aect the
soundness of CGs and their real-world prevalence—as asked by the
Soundiness manifesto [28]. Second, we develop a set of 15 static
analyses deriving 107 features relevant to sound CG construction,
which enable building representative evaluation corpora and fa-
cilitate further studies. Third, we provide a more comprehensive
comparison of four major Java static analysis frameworks. Fourth,
with Judge, we provide a toolchain for analyzing CG algorithms for
Java on arbitrary projects. At last, we contribute a tool-supported
approach to reduce the unsoundness of a CG constructed by an un-
sound algorithm and an experience report of the costs to manually
get closer to a sound CG.

Sui et al. [41] also compared Soot, WALA, and DOOP’s CG imple-
mentations using a micro benchmark suite. They measure the recall
and also the precision of the tested algorithms. We consolidate their
benchmark suite with our test suite. However, neither was their
goal to identify sources of unsoundness nor did they do related
studies.
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Murphy et al. [30] conducted a study where they compared
CG generators for C. They found that CGs emitted by dierent
tools vary for identical input programs and deem the barely under-
stood practical eects of approximations as the problem’s origin.
Furthermore, they discuss how one should chose a CG generator
and recommend to check its input constraints, its documented or
implicitly made design decision, and its correctness w.r.t. one’s
needs. However, such information is generally not available and
our approach is a signicant step towards deriving such informa-
tion automatically. Whereas they conducted a one-time empirical
study, Judge supports the assessment of a CG’s capabilities and pro-
vides project-specic information to enable an informed decision
which CG algorithm to use.

Lai et al. [23] discussed CG construction for dierent kinds of
Java code bases w.r.t. potential sources of unsoundness and pre-
cision. However, they solely focused on programs compiled from
JVM-hosted languages such as OCAML, Jython, Scheme, Scala, or
JRuby. They aim to describe the challenges that arise when con-
structing CGs for such programs and only used WALA for their
analysis. For their study, they focused on minimal, articial code
examples and the identied sources of unsoundness were reec-
tive calls and invokedynamic usage. Our study instead focuses on
the frequency with which features that potentially aect a CG’s
soundness are used in real-world programs.

Lhoták [25] presented a tool that enables a manual, qualitative
comparison between two CGs by rst nding dierences and then
inspecting them. Whereas Lhoták’s work is targeted towards de-
bugging CG implementations, we compare supported features and
APIs as well as their relevance with regard to a particular project.
Also, a systematic identication of sources of unsoundness would
not be possible if the compared CGs both miss some edges; in that
case the graphs would be identical.

Other works presented CG algorithms or algorithm families [5,
6, 19, 36, 45], evaluated and compared them w.r.t their size, num-
ber of reachable methods, poly- and monomorphic call sites, and
runtime. Unlike ours, their CG comparison solely focuses on the
sizes of the CGs and their capabilities to resolve polymorphic calls
and, therefore, on their precision. Complementary to their work,
we enable an automated assessment of CGs w.r.t. their supported
features and APIs and whether their implementation is suitable to
be used on a specic project.

5.2 Benchmarking & Testing
Corpora, such DaCapo [10], the Qualitas Corpus [43, 44], or the
XCorpus [13] are regularly used to evaluate static analyses such
as CG algorithms or points-to analyses on real-world applications.
However, the selection of programs that are added to such corpora
is often guided by the perceived value of the projects or by tech-
nical factors such as compilability which are not principle-based
approaches. This easily leads to corpora with questionable repre-
sentativeness and, therefore, to subsequent research results that are
most likely skewed. Our evaluation shows, e.g., that the programs
from the most recent corpus, the XCorpus, use less features than
the current top 50 Maven libraries.

Furthermore, micro benchmark suites like SecuriBenchMicro [27],
DroidBench [7], or PointerBench [40] also provide one unit test per

feature/program construct and those tests can be used to ensure an
implementation’s correctness; if a test fails the developer can easily
identify the reason why and which code was responsible. However,
none of the test suites targets the identication of bugs/sources of
unsoundness in CG algorithms as done by ours.

Nguyen Quang Do et al. [14] presented an automatic benchmark
management system (ABM) for the generation of updatable corpora.
After a developer species a query, a corpus is automatically mined
from software repositories (e.g. GitHub). ABM does not assess the
mined projects any further but features an integration with Hermes.
Our queries could then be used to create a benchmark suite that
covers relevant projects when constructing CGs. For example, if a
specialized benchmark suite, e.g., to evaluate approaches that target
reective method invocations like [9, 11, 39] should be created, the
respective queries can be used.

6 CONCLUSION
In this paper, we presented Judge for (1) the evaluation of language
features and APIs that are relevant when building CG algorithms; (2)
comparing CG algorithms; (3) evaluating how well-suited a specic
algorithm is for a specic project kind, and (4) to facilitate the
creation of project-specic sound CGs. Additionally, we performed
extensive studies regarding the capabilities of four major Java static
analysis frameworks and the prevalence of features that are not
soundly handled. The results are discouraging. All frameworks lack
support for many features frequently found in the wild and—even
for standard mono-/polymorphic calls—produce vastly dierent
CGs. This renders comparisons of static analyses which rely on
CGs impossible and also considerably unsound.
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