
US010719314B2

(12) United States Patent (10) Patent No .: US 10,719,314 B2
(45) Date of Patent : Jul . 21 , 2020 Lu et al .

(54) PROBABILISTIC CALL - GRAPH
CONSTRUCTION

(56) References Cited
U.S. PATENT DOCUMENTS

(71) Applicant : Oracle International Corporation ,
Redwood Shores , CA (US) 2008/0177756 A1 * 7/2008 Kosche et al . G06F 11/3447

702/127
G06F 16/9024

707/706
2011/0313548 A1 * 12/2011 Taylor et al . (72) Inventors : Yi Lu , Brisbane (AU) ; Daniel

Wainwright , Brisbane (AU) ; Michael
Reif , Darmstadt (DE) (Continued)

OTHER PUBLICATIONS (73) Assignee : ORACLE INTERNATIONAL
CORPORATION , Redwood Shores ,
CA (US) Zhu et al . , “ Symbolic Pointer Analysis Revisited ” , PLDI’04 Jun .

9-11 , 2004 , Washington DC , USA , 13 pages .
(Continued) (*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 38 days .

(21) Appl . No .: 16 / 200,045

Primary Examiner Wei Y Zhen
Assistant Examiner Mohammed N Huda
(74) Attorney , Agent , or Firm -Hickman Palermo
Becker Bingham LLP

(22) Filed : Nov. 26 , 2018

(65) Prior Publication Data

US 2020/0167155 A1 May 28 , 2020

(51) Int . Cl .
G06F 17/00 (2019.01)
G06F 8/75 (2018.01)
G06F 8/20 (2018.01)
G06F 8/41 (2018.01)
G06F 17/18 (2006.01)
GOOF 16/901 (2019.01)

(52) U.S. CI .
CPC GO6F 8/75 (2013.01) ; G06F 8/24

(2013.01) ; G06F 8/433 (2013.01) ; G06F
16/9024 (2019.01) ; G06F 17/18 (2013.01)

(58) Field of Classification Search
CPC ... GO6F 8/24 ; G06F 8/433 ; G06F 8/75 ; G06F

16/9024 ; G06F 17/18
USPC 717/120
See application file for complete search history .

(57) ABSTRACT

Embodiments construct a precise and scalable call graph that
models potentially incomplete object - oriented program
code , including libraries . The call graph encodes the prob
abilities of call relationships in the graph , where the prob
abilities are based on context information from the program ,
and are adjusted based on client configurations . Embodi
ments derive topics to associate with unknown elements , as
well as probabilities for those topics , from declared types of
the unknown elements . Configuration information encodes
sets of feature conditions that direct the weighting of the
unknown element types . As embodiments propagate type
tuples through the graph , the probabilities of the types for
each node are recalculated based on the type / probability
information for the predecessors of the node . Type / probabil
ity information joins are necessary for nodes with multiple
dependencies , where the manner of the join is configurable
by the client .

20 Claims , 8 Drawing Sheets
200

202

CREATE A TYPE - PROPAGATION GRAPH THAT MAPS CALL RELATIONSHIPS
BASED ON PARTICULAR COMPUTER CODE , WHERE THE TYPE

PROPAGATION GRAPH COMPRISES A PLURALITY OF NODES THAT
REPRESENT RESPECTIVE PROGRAM VARIABLES THAT ARE REFERRED

TO IN THE PARTICULAR COMPUTER CODE

204

IDENTIFY ONE OR MORE TYPES THAT ARE ASSOCIATED , IN THE
PARTICULAR COMPUTER CODE , WITH A PARTICULAR PROGRAM

VARIABLE THAT IS REPRESENTED BY A GIVEN NODE OF THE GRAPH

206

DETERMINE A RESPECTIVE PROBABILITY VALUE FOR EACH OF THE ONE
OR MORE TYPES THAT ARE ASSOCIATED WITH THE PARTICULAR PROGRAM

VARIABLE , WHERE THE PROBABILITY VALUE FOR A PARTICULAR TYPE ,
OF THE ONE OR MORE TYPES , REPRESENTS A PROBABILITY THAT THE
PARTICULAR PROGRAM VARIABLE IS OF THE PARTICULAR TYPE DURING

ANY GIVEN EXECUTION OF THE PARTICULAR COMPUTER CODE

208

ASSOCIATE THE GIVEN NODE WITH ONE OR MORE TYPETUPLES ,
ACH OF WHICH INCLUDES INFORMATION IDENTIFYING RESPECTIVE TYPE
OF THE ONE OR MORE TYPES AND THE DETERMINED PROBABILITY VALUE

THAT WAS IDENTIFIED FOR THE PARTICULAR TYPE

210

PROPAGATE TYPE TUPLES ACROSS THE PLURALITY OF NODES

US 10,719,314 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2012/0036103 A1 * 2/2012 Stupp et al . G06F 17/18
706/58

G06F 16/9024 2019/0236475 A1 * 8/2019 Jagota et al .

OTHER PUBLICATIONS

Whaley et al . , " CloningBased ContextSensitive Pointer Alias Analy
sis Using Binary Decision Diagrams ” , dated Jun . 2004 , 14 pages .
Sundaresan et al . , “ Practical Virtual Method Call Resolution for
Java ” , dated 2000 , 17 pages .
Shivers , Olin , “ Control - Flow Analysis of Higher - Order Lan
guages ” , School of Computer ScienceCarnegie Mellon University ,
dated May 1991 , 200 pages .
Reif et al . , “ Call Graph Construction for Java Libraries ” , ACM
dated Nov. 2016 , 13 pages .
Lhotak et al . , “ Context - sensitive points - to analysis : is it worth it ? " ,
Sable Technical Report No. 2005-2 , dated Oct. 21 , 2005 , 17 pages .
Grove et al . , " Call Graph Construction in Object - Oriented Lan
guages ” , OOPSLA , 1997 Conference Proceedings , 17 pages .
Dwyer et al . , " Probabilistic Program Analysis ” , Springer Interna
tional Publishing dated 2015 , 25 pages .
Dean et al . , “ Optimization of Object - Oriented Programs Using
Static Class Hierarchy Analysis ” , ECOOP dated Aug. 1995 , 25
pages .
Bacon et al . , “ Fast Static Analysis of C ++ Virtual Function Calls ” ,
ACM Conference on Object - Oriented Programming Systems , Lan
guages and Applications , dated Oct. 1996 , 19 pages .

* cited by examiner

100

FIG . 1

-110

U.S. Patent

{ B }

{ B }

{ A }

{ B , C }

{ C }

Y

X

Y

114 (Z

104

102

112

106

108

118

120

130

x.f

Jul . 21 , 2020

{ C }

{ B }

116
{ B , C }

Z

Y

134

132

134

150

{ B }

{ C }

142

144

-146

Sheet 1 of 8

Z

Y 152

154

162

164

r.m.first
r.m.Second

138

{ B , C }
(B , C) {

r.m.argument .

136 { B , C }

{ B }

148

156

{ B , C }

-166

r.m.return

r.m.return
X

140

{ B }

160

US 10,719,314 B2

158

{ B , C }

168

U.S. Patent Jul . 21 , 2020 Sheet 2 of 8 US 10,719,314 B2

200 FIG . 2
202

CREATE A TYPE - PROPAGATION GRAPH THAT MAPS CALL RELATIONSHIPS
BASED ON PARTICULAR COMPUTER CODE , WHERE THE TYPE

PROPAGATION GRAPH COMPRISES A PLURALITY OF NODES THAT
REPRESENT RESPECTIVE PROGRAM VARIABLES THAT ARE REFERRED

TO IN THE PARTICULAR COMPUTER CODE

204

IDENTIFY ONE OR MORE TYPES THAT ARE ASSOCIATED , IN THE
PARTICULAR COMPUTER CODE , WITH A PARTICULAR PROGRAM

VARIABLE THAT IS REPRESENTED BY A GIVEN NODE OF THE GRAPH

(206

DETERMINE A RESPECTIVE PROBABILITY VALUE FOR EACH OF THE ONE
OR MORE TYPES THAT ARE ASSOCIATED WITH THE PARTICULAR PROGRAM

VARIABLE , WHERE THE PROBABILITY VALUE FOR A PARTICULAR TYPE ,
OF THE ONE OR MORE TYPES , REPRESENTS A PROBABILITY THAT THE
PARTICULAR PROGRAM VARIABLE IS OF THE PARTICULAR TYPE DURING

ANY GIVEN EXECUTION OF THE PARTICULAR COMPUTER CODE

208

ASSOCIATE THE GIVEN NODE WITH ONE OR MORE TYPETUPLES ,
EACH OF WHICH INCLUDES INFORMATION IDENTIFYING A RESPECTIVE TYPE
OF THE ONE OR MORE TYPES AND THE DETERMINED PROBABILITY VALUE

THAT WAS IDENTIFIED FOR THE PARTICULAR TYPE

210

PROPAGATE TYPE TUPLES ACROSS THE PLURALITY OF NODES

FIG . 3

300

FIX - POINT ITERATION

U.S. Patent

CONSTRUCT TYPE - PROPAGATION GRAPH DETERMINE ENTRY POINTS

NO

POPULATE WORKLIST

314 AVAILABLE NODE ?

302

312

YES

ITERATE OVER ALL METHODS

304

Jul . 21 , 2020

TAKE A NODE AND RETRIEVE ALL TS DEPENDEES

TAKE A DEPENDEE

ADD

IR

318

YES

POPULATE ARGUMENTS
ENTRY POINT ?

306

316

PROPAGATE TYPE TUPLES

Sheet 3 of 8

308

NO

AVAILABLE YES DEPENDEE ? 326

320

NO

NO

ITERATE OVER ALL INSTRUCTIONS AND CONNECT THEM

310

UPDATE ? 322

ADD TO WORKLIST

YES

324

US 10,719,314 B2

FINALIZE CALL GRAPH 328

FIG . 4A

K 410

U.S. Patent

400

{ (B , 0.5) , (C , 0.5) }

{ (C , 1) }

{ (B , 1) }

114

Z

{ (B , 1) }

V

{ (A , 1) }

112

X

Y

118

-120

102

104

106

X. f

108

116

{ (B , 0.25) , (C , 0.75) }

Jul . 21 , 2020

430

{ (C , 1) }

{ (B , 1) }

K

450

Z

?

{ (B , 1) }

{ (C , 1) }

132

134

Sheet 4 of 8

y 152

z 154

142

-144

-146

162

164 r.m.argument
156

136

r.m.first

r.m.second 138
{ (B , 0.5) , (C , 0.5) } { (B , 1) }

-148

{ (B , 0.5) , (C , 0.5) }

158

-166

r.m.return

{ (B , 0.5) ,

(C , 0.5) }

?

160

r.m. return

US 10,719,314 B2

140

{ (B , 1) }

{ (B , 0.5) , (C , 0.5) }

168

U.S. Patent

FIG . 4B 470

Jul . 21 , 2020

{ (C , 1) }

{ (D , 1) }

-488

A.m.return

B.m.return

472

474

482

-484
-486

Sheet 5 of 8

Call site 480

478
I

{ (A , 0.8) , (B , 0.2) }

{ (C , 0.8) ,

(D , 0.2) }

receiver
476

US 10,719,314 B2

U.S. Patent

FIG . 5

500

Jul , 21 , 2020

DECLARED TYPE 502

FEATURE CONDITION 504

FEATURE CONDITION 506

FEATURE CONDITION 508

PROBABILITY ADJUSTMENT INSTRUCTIONS 520

PROBABILITY ADJUSTMENT INSTRUCTIONS 522

PROBABILITY ADJUSTMENT INSTRUCTIONS 524

Sheet 6 of 8

TYPE - PROBABILITY SET 510

TYPE - PROBABILITY SET 512

FINAL ABSTRACTED TYPE - PROBABILITY SET 514

US 10,719,314 B2

FIG . 6

U.S. Patent

ROM

SERVER 630

DISPLAY
612

MAIN MEMORY
606

STORAGE DEVICE
610

628

608

INTERNET

Jul . 21 , 2020

ISP

BUS

INPUT DEVICE
614

602

-626

Sheet 7 of 8

CURSOR CONTROL
616

PROCESSOR
604

COMMUNICATION INTERFACE
618

NETWORK LINK

LOCAL NETWORK 622

600

620

HOST 624

US 10,719,314 B2

700

U.S. Patent

702A

702B

702C

702N

702

APPLICATION PROGRAM 1

APPLICATION PROGRAM 2

APPLICATION PROGRAM 3

[...]

APPLICATION PROGRAM N

Jul . 21 , 2020

OPERATING SYSTEM (e.g. , WINDOWS , UNIX , LINUX , MAC OS , IOS , ANDROID , OR LIKE)

GRAPHICAL USER INTERFACE (GUI)

Sheet 8 of 8

715

710

VIRTUAL MACHINE MONITOR (VMM)

730

BARE HARDWARE (e.g. , COMPUTING DEVICE 600) FIG . 7

US 10,719,314 B2

720

1

5

US 10,719,314 B2
2

PROBABILISTIC CALL - GRAPH requires information about those call relationships that are
CONSTRUCTION highly likely to be present at run - time .

In order to accommodate applications that require that
FIELD OF THE INVENTION every call relationship in a call graph be a call that certainly

occurs at run - time , static analysis techniques may under
The present invention relates to static analysis of com estimate the call relationships in the modeled program .

puter programs and , more specifically , to generating call Specifically , such techniques omit any call relationship that
graphs that map call relationships and program variable is not sure to be present at run - time from the call graph .
types for a given computer program . Many times , such under - inclusive call graphs do not com

10 pletely represent the modeled program at run - time because
BACKGROUND some of the call relationships that were omitted will actually

be present at run - time . In this way , applications that rely on
Static program analysis is the analysis of computer pro a call graph that under - estimates call relationships in the

grams that is performed at compile - time without requiring modeled program do not have access to information about
execution of the programs . For example , some types of 15 all call relationships that will occur in the program at
inter - procedural static analysis , run over a given computer run - time .
program , generate a call graph that maps calling relation A number of static analysis techniques attempt to mitigate
ships between program variables that are present in the the issues that arise when constructing call graphs that
program . Call graphs are fundamental for many applica model object - oriented programming code . For example ,
tions , such as those performing bug detection , compiler 20 Class Hierarchy Analysis (CHA) builds a class hierarchy
optimization , program understanding tools , etc. from the subject computer code that may be used as a basis
More specifically , a call graph is a control flow graph that for building a call graph . Specifically , the resulting class

represents calling relationships between methods , functions , hierarchy can be used to look up the subtypes or supertypes
and / or procedures in a computer program embodied in of a given type in the modeled program . However , CHA
particular computer code . A call graph for a particular 25 does not take into account functions or instances of objects
computer program is comprised of nodes representing pro within object - oriented programs .
gram variables referred to in the code , and edges represent Rapid Type Analysis (RTA) refines CHA by pruning
ing calling relationships between the program variables . A methods in a CHA - based call graph that can never be
program variable may be an object instantiated in the reached , i.e. , based on the enclosing class of the methods
computer program , a call site at which a particular call is 30 never being instantiated in the program . RTA is strictly more
made in the program , or any kind of subroutine of the powerful than CHA , and is still very fast and simple .
program . However , RTA does not work with dynamic dispatches
Many static analysis frameworks provide whole program found in many object - oriented programs .

analysis to generate call graphs , which works very well on Variable Type Analysis (VTA) further refines the prin
procedural - based computer programs . However , unlike pro- 35 ciples behind RTA . Specifically , RTA collects all objects that
cedural - based programs , object - oriented programs may can be created in the whole program and uses that informa
include dynamic dispatches , which prevent determining the tion to prune the call graph edges . VTA goes a step further
exact calling relationships that will be present for the by collecting all variables that are instantiated in the whole
programs at run - time . program being analyzed and uses that information to prune

This indeterminacy in object - oriented programs has been 40 the call graph edges , providing more precise information
a significant hurdle for practical use of object - oriented call than is available from RTA . Like CHA and RTA , VTA is not
graphs in real - world tools . In order to compensate for the field - sensitive . Also , VTA handles dynamic dispatches ,
lack of information regarding dynamic dispatches , static which makes the technique useful for object - oriented pro
analysis techniques generally make overly - pessimistic grams . However , VTA does not address the problem of over
assumptions about call graph edges . In other words , in order 45 or under - approximation of calling relationships described
to cover all possible calling relationships that may result above .
from dynamic dispatches in object - oriented programs , many Furthermore , Control Flow Analysis of Order k (k - CFA)
call graph techniques over - approximate calling relationships was initially formulated for functional languages , but has
between program variables , for example , by converging all since evolved to support object - oriented languages . It is a
possible data - flow or control - flow facts in the program into 50 points - to analysis with k - call - site - sensitivity , field - sensitiv
its call graph . ity , context - sensitive heap , and on - the - fly call graph con
Moreover , whole program analysis may not be available struction , where k limits the length of the call string indi

for analyzing libraries , included in the code of a computer cating those one or more methods from which another
program being analyzed , because libraries depend on the method was called . ZCWL is an algorithm that essentially
application environment that is not available prior to run- 55 performs a k - CFA analysis in which k is the maximum call
time . Further , the increasing size of modern object - oriented depth in the original call graph after merging strongly
libraries means that a highly - inclusive call graph modeling connected components (SCCs) . Because k is different for
a very large object - oriented library may contain more infor each program , the number of contexts is much more variable
mation than could feasibly be used by a real - world appli than in the other variations of context sensitivity . However ,
cation . 60 ZCWL is memory intensive . As such , for large object

A call graph that over - approximates calling relationships oriented programs , ZCWL can fail to complete due to
in the subject program is not a precise representation of the insufficient available memory . However , as with VTA ,
modeled program at run - time given that highly - inclusive k - CFA and ZCWL do not address the problem of over- or
call graphs may include some call relationships that would under - approximation of calling relationships described
never occur in actual runs of the program . This reduction in 65 above .
precision is sub - optimal for many applications that utilize Analysis of incomplete program code , or of object - ori
call graphs , such as a bug detection algorithm that only ented code that includes dynamic dispatches , runs across

US 10,719,314 B2
3 4

issues that are inherently undecidable . Thus , no analysis that models potentially incomplete object - oriented program
algorithm can return both a precise and correct object code , including libraries . Instead of dealing with dynamic
oriented call graph , where a precise call graph includes only dispatches by over - approximating or under - approximating
those call relationships that occur during run - time , and a call relationships between program variables , the probabi
correct call graph includes all call relationships that occur 5 listic call - graph construction analysis quantifies approxima
during run - time . As a result , applications must use either tions that occur in program analysis , thereby statically precise (smaller) call graphs or correct (larger) call graphs , predicting probabilities of each potential calling relationship
neither of which may fully answer the needs of the appli in the graph . The inclusion of call relationship probabilities cations . in the resulting call graph allows for prioritization of the As indicated above , type - based techniques such as CHA , 10 calling relations in the graph . Specifically , because of the RTA , and VTA can build an imprecise call graph , typically
useful when it is beneficial to quickly compile a call graph probability information , applications that consume the call

graph are enabled to make informed decisions about which that scales to large programs . Points - to - based techniques
such as k - CFA and ZCWL can build a more precise call call relationships in the graph to utilize based on the toler
graph at the loss of scalability . However , in addition to ances of the application . Basing decisions on this more rich
failing to address the problem of over- or under - approxima- 15 call graph data set allows application to produce more
tion of calling relationships , none of these works has valuable static analysis results .
addressed the open - world problem where the analysis is Specifically , embodiments construct a type - propagation
performed on incomplete program code (such as libraries) graph to represent the structure of the computer program
that can interact with unknown code . being modeled . The type - propagation graph includes nodes

Thus , it would be beneficial to construct more precise call 20 that represent the program variables and edges between the
graphs that can handle incomplete program code , taking into nodes that represent calling relationships in the program .
account dynamic dispatching in object - oriented programs , Also , embodiments accommodate unknown program ele
without losing information about less - likely call relation ments , such as entry point method arguments , return values
ships . from calls to unknown methods , and reads of fields with

The approaches described in this section are approaches 25 potentially unknown writes , which result from incomplete
that could be pursued , but not necess essarily approaches that programming code representing the computer program have been previously conceived or pursued . Therefore , being analyzed . As such , embodiments include , in the type unless otherwise indicated , it should not be assumed that any
of the approaches described in this section qualify as prior propagation graph , nodes representing the unknown ele
art merely by virtue of their inclusion in this section . Further , ments found in the computer program being analyzed and
it should not be assumed that any of the approaches 30 also any information about call relationships for those

nodes . described in this section are well - understood , routine , or
conventional merely by virtue of their inclusion in this Embodiments then associate the nodes of the type - propa
section . gation graph with information about the types that the

program variables represented by the nodes may assume
BRIEF DESCRIPTION OF THE DRAWINGS 35 during run - time . Embodiments track the probability of call

ing relationships in the computer program being modeled by
In the drawings : assigning probabilities to the types associated with the graph
FIG . 1 depicts four data flow examples , each showing a nodes . The information about a given type assignment and

type - propagation graph that models an associated data flow the probability associated with the type assignment is
operation . 40 referred to herein as a type tuple , where the associated

FIG . 2 depicts a flowchart for propagating type tuples probability represents the probability that at the program
through a type - propagation graph . variable represented by the node to which the tuple is

FIG . 3 depicts a flow chart of call - graph construction assigned will be of that type at run - time . The set of type based on VTA using a worklist - based fix - point algorithm , tuples assigned to a given node is referred to herein as the according to an embodiment . 45 type - probability set (TPS) of the node . FIGS . 4A - B depict examples of type tuple propagation . The tuple's probability is represented by a number FIG . 5 depicts a flowchart for refining a type - probability between P (0) and P (1) , from unlikely to likely , and set based on client - configurable feature conditions .
FIG . 6 depicts a computer system that may be used in an expresses a type's certainty to reach a particular statement .

embodiment . According to an embodiment , described below , all prob
FIG . 7 depicts a software system that may be used in an 50 abilities that are contained in a single set are relative to each

embodiment . other and will , therefore , always sum up to 1. When two
types in a set have the same probability , it implies that both

DETAILED DESCRIPTION types are equally likely to be available at this statement .
Embodiments propagate type tuples through the type

In the following description , for the purposes of expla- 55 propagation graph . To set the type - propagation graph up for
nation , numerous specific details are set forth in order to propagating type tuples , embodiments initially populate the
provide a thorough understanding of the present invention . graph with type tuples for all program variables for which
It will be apparent , however , that the present invention may type information is available , such as program variables
be practiced without these specific details . In other associated with allocation sites in the program . The prob
instances , well - known structures and devices are shown in 60 ability that is initially associated with a given type assigned
block diagram form in order to avoid unnecessarily obscur to a known element is generated based on the circumstances
ing the present invention . of the associated program variable in the program .

Embodiments derive topics to associate with unknown
General Overview element nodes , as well as probabilities for those topics , from

65 the declared type that is used for the corresponding unknown
Embodiments perform a probabilistic - based static analy program elements . However , the declared type of an

sis technique to construct a precise and scalable call graph unknown element may be a supertype that comprises many

5

US 10,719,314 B2
5 6

subtypes , each of which the unknown element may poten because VTA offers a good trade - off between scalability and
tially assume at run - time . Thus , in order to provide mean precision . However , embodiments are not limited to this call
ingful information about these unknown elements in the graph analysis technique , and another technique (such as
final call graph , embodiments identify and refine the TPS for CHA , LibCHA , context - sensitive CFA , etc.) may be used .
unknown elements based on user - configured criteria . VTA generates a call graph representing a given computer

Specifically , embodiments allow clients to provide con program , where the call graph associates all program vari
figuration information that associates , with each of one or ables (including fields) in the computer program with a more object supertypes , a respective set of feature conditions respective type set . The type set of a given program variable that direct the weighting of types for an unknown element contains all possible types of objects that may be referenced that is associated , in the computer program being modeled , 10 by the variable . During generation of a given call graph , the with the supertype . Such feature conditions may be based on core VTA algorithm propagates type information among programming patterns , programming rules , known contex
tual information (such as call sites that invoke the associated program variables in the graph for each data - flow operation .
public method) , etc. Application of associated probability The type set associated with each program variable is used
adjustment instructions cause the probabilities of types that 15 to identify the target methods of any calls invoked on the

variable . satisfy the conditions to be variously weighted . In this way ,
the TPS of an unknown element is generated based on the Types are initially identified for program variables based
requirements of the client . on object allocations in the program code (i.e. , using the new

As embodiments propagate type tuples through the graph , operation in Java / C ++ like programming languages) . These
embodiments recalculate the probabilities in the TPS of each 20 initially - identified types are then propagated to other pro
node based on the TPSs of the one or more predecessors of gram variables along the data - flow operations . For assign
the respective node . Whereas it is sufficient to simply ments , the type information is propagated from the type - set
propagate the TPS for node updates where the node has only of the assigner variable (at a " predecessor ” node) to the
a single dependency , TPS joins are necessary for nodes with type - set of the assignee variable (at a “ dependee ” node) .
multiple dependencies . According to embodiments , the way 25 VTA performs analysis on an intermediate representation
that the TPSs of multiple predecessors is joined to produce of the subject computer program called the Static Single
the TPS of a dependee node is configurable by the client . Assignment (SSA) form in which each local variable is According to an embodiment , the type tuples with which renamed when it is assigned to a different value . Field writes the type - propagation graph is initially populated are propa propagate types to fields , and VTA converges all field
gated throughout the graph until a fix point is reached . 30 assignments due to possible aliases of the receiver object . According to another embodiment , the configuration infor Method calls propagate types from actual parameters to the mation includes a threshold of propagation , which allows
users to control the amount of processing power it requires formal parameters , converging all call sites because VTA is

context - insensitive . Similarly , method returns converge type to generate the call graph . For example , the type tuples with information from different call sites on the same method and which the type - propagation graph is initially populated are 35 return the converged type information . propagated throughout the graph until a predetermined num In summary , VTA uses more precise abstraction (types at ber of propagation iterations , indicated in the configuration allocation sites) for heap objects . Such a feature allows for information , has been reached . As another example , user more precise call graph construction than other type - based input directs that any given type tuple may be propagated algorithms (such as CHA and RTA) . On the other hand , VTA only when the probability of the tuple exceeds a specified 40 does not reason about aliases , and therefore provides better threshold . Basing propagation of type information on user scalability than points - to - based algorithms . configuration directives mitigates the potential of excess VTA Call Graph Examples processing power being required to generate a call graph , Some example VTA type propagations are described such as in the case where a fix point is elusive given the below using graph examples depicted in FIG . 1. Specifically ,
indeterminate nature of object - oriented code . FIG . 1 includes examples 100 , 110 , 130 , and 150 , each The probability information that is thereby propagated
throughout the graph allows for weighting the call relation showing a type - propagation graph that models an associated
ships that correspond to the assigned types . Clients that computer program , the respective pseudocodes for which

are indicated below . consume the resulting call graph may tailor the graph to the Example 100 : needs of the application . For example , based on user con- 50
figuration , embodiments cause that the final call graph
contain only edges that exceed a predefined threshold . Ax = new A () ;
Because of the propagation of probability information and = new B () ; // B < A

the configurability of the call graph construction , final call
X = Y ; graphs produced by embodiments contain all information 55

requested by clients , but does not include excess information
over what is needed by the client . Thus , the final call graph As shown in example 100 of FIG . 1 , node 106 represents
data is as small and efficient as possible , and consumer a program variable , x , which is assigned a new object
applications need not waste processing power sifting instantiation of type A at line 1. Node 104 represents a
through extraneous call graph information . Furthermore , 60 program variable , y , which is assigned a new object instan
because of the precision of the final call graph , consumer tiation of type B at line 2. As indicated in the comment , B
application results are also able to be precise . is a subtype of A. Node 102 represents a program variable ,
VTA Basics x ' , which is formed in the SSA when variable x gets a new
According to embodiments , any call graph analysis definition by being reassigned to object y at line 4 , as

approach may be used as a mechanism to generate a type- 65 represented by calling relationship 108. The program vari
propagation graph , or to propagate information through the able x ' is of type B because x ' gets assigned the object y ,
graph . Embodiments are described herein based on VTA which is also of type B.

45

1

?? 2
3
4

US 10,719,314 B2
7 8

Example 110 : Example 150 :

1 A method (A argument) {
// some code
return argument ;

5

C z = new C () ;
A y ; // C < B < : A
if (condition)

? = new B () ;
else

y = new C () ;
x.fr y ;

2
3
4
5
6
7
8

}

2
3
4
5
6
7
8
9

10

IIC < BA
By = new B () ;
C z = new C () ;

x.f = z ;
10 X =

2
3
4 }

// C < B < A

receiver.method (y) ;
receiver.method (z) ;

As shown in example 110 of FIG . 1 , node 114 represents
a program variable , z , that is assigned a new object instan As shown in example 150 of FIG . 1 , node 152 represents tiation of type C at line 1. At line 2 , a program variable y of a program variable , y , which is assigned a new object type A is instantiated , where type C is a subtype of type B , 15 instantiation of type B at line 6. Also , node 154 represents which is a subtype of type A , as indicated by the comment
“ C < : B < : A ” . Node 112 represents the program variable , y , a program variable , z , which is assigned a new object
which is assigned a new object instantiation that will either instantiation of type C at line 7. Node 156 represents the
be of type B or type C , depending on the condition of the if argument parameter that is sent into the method defined at
statement of lines 3-6 at run - time . Thus , node 112 is labeled 20 lines 1-4 . In example 150 , the method is called with both of objects y and z as the argument parameter at lines 9 and 10 . with the set of types { B , C } . Node 116 represents a field f As such , node 156 is the end node of two calling relation of an object x , where x.f is assigned once to object y at line
7 , as represented by calling relationship 118 , and once to ships 162 and 164 , with the start nodes of the two relation

ships being nodes 152 and 154 , respectively . Thus , the union object z at line 8 , as represented by calling relationship 120 .
The set of types that are propagated to node 116 is the union 25 of the types associated with nodes 152 and 154 are propa gated to node 156 , i.e. , { B , C } . of the types associated with the program variables that are The argument parameter of the method is returned from start nodes of call relationships for which node 116 is the end the method every time at line 3. As such , node 158 , which node , i.e. , (B , C } . represents the return value of the method , is the end node of Example 130 : 30 calling relationship 166 for which node 156 is the start node .

Node 158 inherits the type set associated with node 156 , i.e. ,
{ B , C } . A method (A first , A second) {

// some code In one case at line 9 , a variable x is assigned to receive the
return second ; return value from receiver.method (y) . Thus , node 160 ,

35 which represents program variable x , is the end node of
5 calling relationship 168 for which node 158 is the start node . ? ? new BO) ;

C z = new C () ; Node 160 inherits the type set associated with node 158 , i.e. ,
{ B , C) . Example 150 illustrates over - approximation of call

receiver.method (y , y) ; relationships because the variable x would only ever take on receiver.method (z , y) ; 40 the type B , but the set of types assigned to node 160 is
propagated from node 158 , and includes more types than x

As shown in example 130 of FIG . 1 , node 132 represents would ever take on at run - time .
a program variable , Z , which is assigned a new object Constructing Type - Propagation Graphs
instantiation of type C at line 7. Node 134 represents a According to an embodiment , before computing the call
program variable , y , which is assigned a new object instan- 45 graph for a given computer program , embodiments build up
tiation of type B at line 6. Node 136 represents the parameter a type - propagation graph that represents the program vari
named first and node 138 represents the parameter named ables and call relationships in the computer program . Since
second , each of which are parameters of the method defined this step is concerned only with the codebase's internals , the
at lines 1-4 . In example 130 , the defined method is called process is almost the same as is performed by VTA ,

50 described above . According to embodiments , each node in once with object y as the first parameter at line 9 , and once the resulting type - propagation graph not only includes point with object z as the first parameter at line 10. As such , node ers to its dependees , but also includes pointers to its depen 136 is the end node of two calling relationships 142 and 144 , dencies . This additional information facilitates computation with the start nodes of the two relationships being nodes 132 of TPSs based on TPS joins of information from predecessor
and 134 , respectively . Thus , the union of the types associ- 55 nodes . Furthermore , embodiments resolve virtual method
ated with nodes 132 and 134 are propagated to node 136 , invocations on - the - fly . Specifically , edges are added to the
i.e. , (B , C } type - propagation graph for call sites as the type probabilities

The method is called with object y as the second param are being propagated through the graph , in particular to
eter at both of lines 9 and 10 , and , as such , node 138 is the receivers of method calls , as described in further detail in
end node of calling relationship 146 for which node 134 is 60 connection with fix - point iteration below .
the start node . Thus , node 138 inherits the type set associated FIG . 2 depicts a flowchart 200 for propagating type tuples
with node 134 , i.e. , { B } . The second parameter of the through a type - propagation graph , according to embodi
method is also the return value for the method at line 3. As ments . Specifically , at step 202 , a type - propagation graph
such , node 140 , which represents the return value of the that maps call relationships based on particular computer
method , is the end node of calling relationship 148 for which 65 code is created , where the type - propagation graph comprises
node 138 is the start node . Node 140 inherits the type set a plurality of nodes that represent respective program vari
associated with node 138 , i.e. , { B } . ables that are referred to in the particular computer code . For

6
7
8
9

10

US 10,719,314 B2
9 10

example , a computing device runs a call graph analysis computer code , with a particular program variable that is
application (CGAA) that creates a call graph that models a represented by a given node , of the graph , are identified . For
particular computer program according to embodiments . example , in type - propagation graph example 100 of FIG . 1 ,
An application or service , such as the CGAA , runs on a node 104 represents program variable y , which is assigned

computing device and comprises a combination of software 5 a new object of type B at line 2 of the associated pseudocode
and allocation of resources from the computing device . above . In this example , the CGAA identifies { B } to be the Specifically , an application or service is a combination of set of types that are associated with node 104 in the integrated software components and an allocation of com computer code . This is an example of an explicit association putational resources , such as memory , and / or processes on of a type with a program variable . the computing device for executing the integrated software 10 However , not all program variables can be assigned initial components on a processor , the combination of the software
and computational resources being dedicated to performing type tuples without ambiguity . For example , node 102 of
the stated functions of the application or service . example 100 is not explicitly associated with a type in the

Returning to the description of step 202 , the CGAA example pseudocode . However , because the node represents
analyzes a particular object - oriented computer program that 15 a known element (that is not from an incomplete portion of
comprises computer code . The CGAA generates a type the code being analyzed) , the node is a dependee of other
propagation graph that comprises nodes , which represent nodes from which type information is propagated during the
program variables in the computer program , and edges , fix - point iteration phase .
which represent call relationships between the program In the case of unknown elements , such as entry - point
variables . According to an embodiment , the type - propaga- 20 method arguments , return values from calls to unknown
tion graph includes one or more nodes that represent one or methods , and reads of fields with potentially unknown
more respective unknown elements , as well as edges that writes , many times , nodes representing these program vari
epresent any call relationship information known for the ables are not dependees of nodes in the graph from which
unknown elements . type information may be propagated . Further , any nodes

To illustrate , FIG . 3 shows a flow chart 300 of an example 25 with type information from which unknown element nodes
embodiment of type - propagation graph construction , which depend do not include all type information that is applicable
uses a worklist - based fix - point algorithm . Specifically , in the to the unknown elements . According to an embodiment , a
embodiment depicted in FIG . 3 , based on an intermediate node that represents the unknown element retains informa
representation (IR) of the computer program being analyzed , tion about the source of the unknown element , such as a
the CGAA constructs a type - propagation graph at steps 30 reference to the method in which the element appears
302-310 . At step 302 , all entry points of the computer (“ context method ”) , in the case of a , a source object
program are determined by steps 304-306 . At step 304 , the The only information available to the VTA for an
CGAA iterates over all methods in the intermediate repre unknown element is the declared type (a) of any read field ,
sentation , where a method represents a grouping of com (b) of any passed method argument of an entry point method ,
puter instructions (or a procedure) that may be invoked , as 35 or (C) of the return type of any called method . According to
a group , by calling the method by its name and in its an embodiment , it is assumed that all currently known
applicable context , such as an object in the context of which subtypes of a declared type are available at run - time for the
the method is defined . necessary points in the code .

At step 306 , the CGAA determines whether each respec For example , the CGAA identifies a library method that
tive method is an entry point . According to an embodiment , 40 has two arguments : argString with the type java.lang.String ,
an entry point method is any method that may potentially be and argObject with the type java.lang . Object . The declared
invoked by any (possibly unknown) application . At step 308 , type of argString narrows the type of the element to a
for every entry point method , the CGAA creates nodes , in particular specific class from which certain information is
the graph , to represent the arguments for the respective known about the argument . Because there is only one
method . According to embodiments , the CGAA also repre- 45 potential type associated with this element , the probability
sents any other unknown elements found in the computer of this type is P (1) . In contrast , the type java.lang.Object is
program as nodes in the graph . At step 310 , the CGAA a superclass for virtually all other objects . This declared type
iterates over all instructions in the computer program and gives almost no information about the argument . The TPS of
connects the nodes of the type - propagation graph with edges argObject will be a set of all subtypes of the declared type ,
that represent the call relationships in the program . 50 where the subtype relationship is transitive meaning that the
Identifying Initial Type Tuples declared type is also included in the resulting set .
Once the type - propagation graph is constructed , the The necessary assumption that an element may be any

CGAA uses information from the computer program to subtype of the associated declared type introduces impreci
assign , to at least some of the nodes in the type - propagation sion into the call graph . However , by assigning weights to
graph , type tuples . Specifically , steps 204-208 are performed 55 the possible subtypes of an unknown element based on
for each node of a set of nodes , in the type - propagation client - configurable feature conditions , as described in detail
graph , that represent program variables that are associated , below , embodiments distinguish between the potential
in the particular computer code , with type information . For myriad of types assigned to unknown elements .
example , program variables that are associated with new Identifying Probabilities for Initially - Established Types
object allocations in the program being analyzed are explic- 60 At step 206 , a respective probability value for each of the
itly associated with the types of those new objects . The type one or more types that are associated with the particular
tuples resulting from this first phase of type information program variable is determined , where the probability value
association are a starting point for the CGAA to propagate for a particular type , of the one or more types , represents a
probabilities throughout the type - propagation graph , as probability that the particular program variable is of the
described in connection with fix - point iteration below . 65 particular type during any given execution of the particular
Returning to the discussion of flowchart 200 , at step 204 , computer code . Whereas probabilities can also be repre

one or more types that are associated , in the particular sented in any way , embodiments are described herein using

US 10,719,314 B2
11 12

a relative representation , i.e. , the probabilities in a resulting According to an embodiment , the CGAA applies a default
type set will always add up to 1 . set of feature conditions to unknown elements associated

To illustrate , FIG . 4A depicts the four data flow examples with a declared type that is not explicitly indicated in the
400 , 410 , 430 , and 450 corresponding to the examples from client configuration information . This default set of feature
FIG . 1 , with each example in FIG . 4A showing a type- 5 conditions (with associated probability adjustment instruc
propagation graph with type tuples associated with the graph tions) is also configurable by the client .
nodes . In example 400 , the program variable y is associated FIG . 5 depicts a flowchart 500 for refining a type
with a new object allocation of type B. This is the only type probability set based on client - configurable features . Con
information associated with y . Thus , the probability of y figuration data , which is configurable by the client , associ
being associated with type B is P (1) . Thus , as shown in 10 ates each of one or more declared object types with a
example 400 in FIG . 4A , node 104 is associated with the respective set of client - configured feature conditions to be

used in adjusting the TPS of a given unknown element that type tuple (B , 1) , which indicates that there is a 100 % chance is associated , in the code , with the declared type . FIG . 5 of program variable y being associated with type B. shows an example declared type 502 that is associated with
In the case of example 410 , the CGAA detects that y may 15 a set of feature conditions 504-506 . Each of these feature

be initiated as either type B or type C (as indicated in the if conditions is associated with a respective set of probability
statement of lines 3-6 of example 110 above) . As such , the adjustment instructions , which dictates the effects of the
CGAA associates node 112 with both of these potential associated feature condition . In the example of FIG . 5 ,
types . According to an embodiment , CGAA splits the prob application of the feature conditions in the set occurs seri
ability equally among the two types that y may be initiated 20 ally , where application of each condition further refines the
as , i.e. , (B , 0.5) , (C , 0.5) . According to another embodiment , TPS of the subject node until a final TPS 514 is reached (to
the CGAA analyzes the condition of the if statement to which all applicable feature conditions have been applied) .
determine the likelihood of y being instantiated as either A feature condition may involve any aspect (or combi
type B or type C , and assigns probabilities to the two tuples nation of aspects) of the structure of the program being
based on the likelihood of the condition . 25 analyzed , or of the context of the program being analyzed .
Approximate Unknown Context Examples of features that may be taken into consideration

According to one embodiment , for an unknown element , include : whether the method in which the element appears
all potential types of the element are initially weighted (i.e. , “ context method ”) is public or private ; how is a public
equally in the TPS for the element . To illustrate , the example context method is being exported (are there certain condi
displayed in Listing 1 , below , shows the type hierarchy of 30 tions / privileges associated with usage of the context
the program (lines 1-4) and an entry - point method (lines method) ; package visibility ; types being passed into the
7-9) that receives the root type of the type hierarchy as context method at call sites in the computer code ; if the type
formal parameter objl , and then calls a method on the inherits from a given class ; if the types being passed into the
argument objI (line 8) . To build a sound call graph , the context method are constructible by users or are defined
CGAA assumes that the method call can be dispatched to all 35 within a library (and not user constructible) ; whether the
four target methods in lines 1-4 . According to an embodi context method is in a particular enumerated set of methods ;
ment , the CGAA initializes the probability values for each whether the context method is called at a call site located
type available for objI based on an equal distribution of within a method that is in a particular enumerated set of
probability across all possible call targets . Four call targets methods ; whether the type is declared in the same package
would then imply P (0.25) per type . 40 as the context method ; etc. Because the CGAA has access to

all of the aspects of the program being analyzed , a feature
condition may be any condition that is useful to the particu

Listing 1 lar needs of the application of the client .
interface I { void method () { * do something * / } } According to an embodiment , the CGAA determines
public class A { public void method () { 1 * do something * / } } 45 whether a node qualifies for feature - based processing based
class B { public void method () { 1 * do something * / } } on a qualifying condition for feature - based processing being
class C { public void method () { * do something * / met by the node , e.g. , the program variable represented by

the node is from incomplete code (such as being one of the public class API {
public static void apiMethod (I objI) { types of unknown elements listed above) , and the number of

objI.method () ; 50 type tuples in the TPS of the node exceeds a predetermined
threshold number . Upon determining that an unknown ele
ment qualifies for feature - based processing , the CGAA
identifies a set of feature conditions to apply to the TPS of

However , allowing each potential type of an unknown the node . Specifically , if the declared type associated with
element to share an equal probability does not necessarily 55 the element in the code is explicitly associated with a set of
give the client usable information . As such , embodiments feature conditions in the configuration information , the
approximate context for unknown elements by assigning CGAA applies that set of feature conditions to the TPS of the
probabilities to the types in the TPS of an unknown element node . If the declared type associated with the element in the
based on distinguishable features of the types . Specifically , code is not associated with a set of feature conditions in the
the TPS of an unknown element is adjusted based on an 60 configuration information , the CGAA applies a default set of
applicable set of feature conditions that guide adjustments of feature conditions to the TPS of the node .
the probability values in the TPS . The sets of feature When a type satisfies a feature condition in the applicable
conditions that are applied , as well as the resulting effect on set of feature conditions , the probability value associated
the probability values , is configurable by the client . This with the type is weighted as indicated by probability adjust
client - configured feature - based TPS construction tailors the 65 ment instructions associated with the feature condition . The
information in the TPSs of unknown elements to the needs probability adjustment instructions for a given feature con
of client analysis . dition can do any kind of adjustment to probability values .

1
2
3
4
5
6
7
8
9 }

10 }

US 10,719,314 B2
13 14

For example , the probability value associated with a given discussion of FIG . 5 , when feature condition 504 is applied
type is scaled up when the type satisfies an applicable feature to the initial TPS of a given unknown element , the prob
condition , or is scaled down when the type does not satisfy ability value of any type in the initial TPS is adjusted
the feature condition . According to the embodiment in according to probability adjustment instructions 520 asso
which all probabilities that are contained in a single TPS are 5 ciated with feature condition 504 , as applicable . As such ,
relative to each other , the CGAA normalizes the probabili TPS 510 depicted in FIG . 5 includes adjustments from ties in the final abstracted type - probability set 514 after all applying instructions 520 .
feature conditions have been applied to the TPS . Then , feature condition 506 is applied to TPS 510 , and the To illustrate an entry of a configuration file , the declared probability values of the types in TPS 510 are further type java.lang . Object is associated with a set of feature 10 adjusted according to probability adjustment instructions conditions that includes a first feature condition that con 522 , which are associated with feature condition 506 , as siders the types being passed into the context method at call
sites of the context method in the computer code . In this applicable . Thus , TPS 512 depicted in FIG . 5 includes
example , the feature condition is “ if the type is associated adjustments from applying both of instructions 522 and
with the element at a call site ” and the associated probability is instructions 520. Similarly , TPS 514 depicted in FIG . 5
adjustment instructions are “ then increase the probability of includes adjustments from applying instructions 524 ,
the type by 50 % , else decrease the probability of the type by instructions 522 , and instructions 520 , as applicable . In this
5 % ” . way , application of each feature condition further refines the

In order to apply this feature condition to a particular TPS of the unknown element until a final TPS 514 is
unknown element that is associated with the declared type 20 reached .
java.lang . Object , the CGAA first determines whether the Fix Point Iteration : Populating a Type - Propagation Graph
element is associated with a context method , i.e. , as recorded with Type Tuples
in metadata of the node . If the element is associated with a At step 208 , a given node is associated with one or more
context method , the CGAA identifies all call sites of the type tuples , each of which includes information identifying
context method in the computer program . For example , the 25 a respective type of the one or more types and the deter
context method is called one or more times within other mined probability value that was identified for the particular
methods in the library or within the computer program being type . For example , the CGAA associates type tuples with
analyzed (which utilizes the library) . For each call site , the each node for which the CGAA has initially identified types
CGAA identifies a respective type of an object that corre and associated probabilities (such as those derived from
sponds to the unknown element , and records the type in a list 30 explicit associations in the computer program , and those
of types . The CGAA then evaluates each type in the TPS of derived from declared types and refined by feature condition
the node for the unknown element to determine whether the application) , where the type tuples record the initially
respective type is in the compiled list of types . If a given identified type and probability value information for the
type is in the list of types , the CGAA automatically increases program variables represented by the nodes .
the probability associated with the type by 50 % . If a given 35 At step 210 , type tuples are propagated across the plural
type is not in the list of types , the CGAA automatically ity of nodes . For example , once all of the initially - identifi
decreases the probability associated with the type by 5 % . able type tuples are associated with the appropriate nodes in

These call sites provide information about objects that the type - propagation graph , the CGAA propagates type
are , indeed , used for the parameter at least a portion of the tuples throughout the type - propagation graph . According to
time . In this example , types that are known to be used as the 40 the embodiment depicted in FIG . 3 , at step 312 , the CGAA
unknown element (as shown in the identified call sites) are initiates propagation of type tuples by populating a worklist
weighted differently than the other possible types for the with information that identifies all nodes in the type - propa
element . Depending on client purposes , the known types gation graph that have been associated with type tuples e.g. ,
may be weighted either more heavily than the other types for in connection with step 208 .
the element (such as for a bug analysis tool that requires 45 At step 314 of FIG . 3 , the CGAA determines whether
more certainty as to the probability of the types) or may be there is an “ available node ” in the worklist , which records all
weighted less heavily than the other types for the element nodes associated with TPS information that needs to be
(such as for a security analysis tool that focuses more propagated to dependent nodes in the graph . If there is a
processing on the types that are not known to be safely used , node in the worklist , the CGAA removes the node from the
as evidenced by the call sites in the computer program) . 50 worklist and retrieves information for all dependees of the

As another example , a second feature condition in the set node at step 316 .
of feature conditions associated with java.lang . Object is a The CGAA then determines whether there is an available
compound feature condition that indicates (a) “ if the pack dependee from the retrieved dependees at step 326. If there
age in which the unknown element is found is public ” and is an available dependee (step 318) , the CGAA propagates
(b) “ if the type is not associated with a module to which the 55 the type tuples from the predecessor nodes of the respective
package is exported ” . This compound feature condition is dependee (at step 320) . Specifically , if needed , the CGAA
satisfied when both of the conditions are satisfied for a given adjusts the previously - calculated TPS of the dependee based
type . The probability adjustment instructions associated on the current TPSs of all of the predecessor nodes , as
with this second feature condition is “ then set the probability discussed in detail below in connection with TPS joins .
value of the type to nil ” . According to an embodiment , a 60 Because information for all predecessor TPSs are required to
probability value that is set to nil remains nil after the TPS calculate the TPS of the dependee , the type - propagation
probabilities are normalized . This feature causes that types graph includes information identifying the predecessor
that cannot be used for the element be removed from nodes of any given node . As indicated at step 322 , if the TPS
consideration . of the dependee is updated based on the TPSs of the

Each feature condition in an applicable set of feature 65 predecessor nodes , then , at step 324 , the CGAA adds infor
conditions is applied to the type - probability set associated mation for the dependee to the worklist for further propa
with the unknown element in question . Continuing with the gation of the updated TPS information . Once the CGAA has

10

15

US 10,719,314 B2
15 16

processed the TPS of the dependee , information for the weight types in the parent TPSs that are were derived from
dependee is removed from the identified list of dependees . object allocations by 20 % prior to performing the join .

At step 326 , the CGAA determines if there is an available FIGS . 4A - B show examples of type tuple propagation . In
dependee in the dependee list . If so , the CGAA returns to example 410 , which depicts a graph that models a field
step 318 for the next dependee . If not , the CGAA returns to 5 write , node 116 , which represents the updated field , has
step 314 to determine if there is another node in the worklist exactly two predecessors , i.e. , nodes 112 and 114. The
to process . Returning to the discussion of step 322 , if the computation of a TPS for node 116 would be relatively
TPS of the dependee was not changed , the CGAA moves straight - forward if both predecessors held a singleton TPS
straight to step 326 to determine if there is an additional (i.e. , comprising a single tuple that represents a type with a
dependee to process without including information for the probability of 100 % or P (1)) . In such a case , the resulting
just - processed dependee to the worklist . TPS for node 116 will either be : a singleton set when both

At step 314 , once there are no more nodes in the worklist , predecessors have the same type ; or a set with two tuples
the CGAA finalizes the call graph based on the type representing two different types with a probability of 50 %
propagation graph at step 328. Thus , according to a worklist each , according to an embodiment .
based embodiment , the CGAA propagates type tuples In the case of example 410 , the CGAA initially deter

mines the predecessor TPSs as P112 ” and P114 ' . Based on through the type - propagation graph until of the TPSs of the this information , the CGAA performs a join of the prede nodes stop changing (i.e. , become stable) , at which point the cessor TPSs to produce a TPS for node 116 of P116B , 0.5) , (C , graph has fully updated the graph to reflect the probabilities 0.5) . Note that the notation p ; 4 identifies a predecessor node
of the call relationships , as calculated based on client- 20 p that has the index i and a TPS that comprises type A. When
provided instructions . no probability is indicated , the probability of the indicated Performing TPS Joins type is implied to be P (1) .

Nodes with exactly one predecessor , e.g. , in an assign The CGAA continues analysis of the program and detects
ment such as is represented by nodes 102 and 104 in that y may also be initiated as type C. As such , the CGAA
example 400 of FIG . 4A , are simple to process because the 25 updates the TPS of node 112 to include a tuple with type C.
predecessor's TPS becomes the TPS of the updated node . According to an embodiment , CGAA splits the probability
However , when a node has multiple predecessors (e.g. , as equally among the two types that y may be initiated as , i.e. ,
depicted in example 430 of FIG . 4A , where an argument P112 (B , 0.5) , (C , 0.5) . According to another embodiment , CGAA
node 136 has different program variables represented by analyzes the condition of the if statement to determine the
nodes 132 and 134 passed in at dissimilar call sites) , the TPS 30 likelihood of y being instantiated as either type B or type C ,
of the dependee is calculated by joining the TPSs of all and assigns probabilities to the two tuples accordingly .
known predecessors . For example , every time a predecessor When node 112 is updated to include the second type
of a node with multiple predecessors receives an update , tuple , it is not enough to recompute the TPS of node 116 just
embodiments compute a new TPS for the node using the by incorporating the updated predecessor . Specifically , fol
TPSs of all predecessor nodes , instead of taking only the 35 lowing a naïve application of the updated predecessors ,
update source into consideration . The complete recomputa starting with the previously - calculated TPS of P116
tion of TPSs avoids introduction of bias toward nodes that 0.5) —which was calculated when each predecessor was
receive updates relatively often in the fix - point computation . associated with only one , distinct , type and predecessor

Joins may be executed according to any set of rules , TPSs of p112B , 0.5) , (C , 0.5) and p114 the resulting TPS of node
which are configurable by the client . Examples below are 40 116 will again be P116 (B , 0.5) , (C , 0.5) . However , this naive
described based on a rule indicating that predecessor TPSs approach fails to properly account for the updated probabili
are all weighted equally when joined to compute a dependee ties assigned to the types in both the predecessor TPSs .
TPS . However , other rules may be applied to weight differ Instead , embodiments compute the TPS of node 116 based ent predecessor TPSs differently . For example , client con on the latest - determined TPSs of all predecessors . Accord
figuration information indicates that any tuple in a TPS that 45 ing to an embodiment in which the probabilities of each
has less than a threshold probability should not be included predecessor is equally weighted in determining the TPS of
in a join to calculated a dependee TPS . This configuration node 116 , the CGAA determines that the TPS of node 116 is
rule potentially reduces the amount of processing power (B , 0.25) , (C , 0.75) P116 required to bring a type - propagation graph to a fix - point According to an embodiment , the computation of the TPS
during propagation , as indicated below . As another example , 50 of a program variable that receives the return value of a
client configuration information indicates that any type that method call at a given call site is influenced by the likelihood
satisfies a feature condition (as described above in connec of which method would be invoked at the call site . FIG . 4B
tion with unknown context) should be weighted as indicated shows a graph example 470 , that models the following
in associated probability adjustment instructions . data - flow operations illustrating the point :

As yet another example , clients may configure the CGAA 55 Example 470 :
such that only a predetermined number of the highest
probability topics are taken into consideration when per
forming a join . To illustrate , a first predecessor of a given C A.method () {
node is associated with eight type tuples and a second return new C () ;
predecessor of the node is associated with five type tuples . 60
Given a client configuration causing the CGAA to take into D B.method () { account only the five highest - probability topics from the return new D () ;
predecessors , the CGAA ranks the 13 tuples from the
predecessor nodes by probability , and performs a join over receiver = { (A , 0.8) , (B , 0.2) } the predecessor TPSs as if those five highest - probability 65 receiver.method () ;
tuples were the only tuples present in the parent TPSs . As yet
another example , a client configuration causes the CGAA to

(B , 0.5) , (C ,

1

}
2
3
4
5
6
7
8

9
10

}

r =

US 10,719,314 B2
17 18

As shown in example 470 , node 472 represents the return edges between arguments at call sites to formal parameters
value of the method of A , which is of type C , and node 474 of the callees , such as edges 162 and 164. A drawback of this
represents the return value of the method of B , which is of is that all call targets get notified when the arguments are
type D. Call site 480 represents the method call at line 10 of added to the worklist . The approximate equality function
example 470. This method call will either invoke A.method , 5 described above makes the added computation burden less
as shown by edge 482 , or invoke B.method , as shown by intensive . However , this handling of a call site node does not
edge 484. Node 476 represents the receiver object , which , require a merge of reachable types because the receiver node
based on the available information , has an 80 % chance of of the call sites is the same node that triggered the update . being of type A and a 20 % chance of being of type B. Thus , When an update to the TPS of a call site has been the TPS of node 476 is (A , 0.8) , (B , 0.2) . Node 478 10 triggered by an update to the TPS of an argument node , all represents the object r that receives the return value from the current callees of the call site must be notified , such that the method call (of either A.method , as shown by edge 488 , or
B.method , as shown by edge 486) . Because the type of the change is propagated to all currently known call targets . That
receiver node directly affects which method is called means that all of the respective argument nodes must also be
between A.method and B.method , the TPS of node 478 is 15 added to the worklist . Types are joined during the process .

(C , 0.8) , (1,0.2) P116 or 80 % probability of the return type of When an update to the TPS of a call site has been
A.method (type C) and 20 % probability of the return type of triggered by an update to the return value of one of the
B.method (type D) . callees of a call site , the return set of the call site must be
Increasing Efficiency of the Propagation Phase updated . Such an update is relevant when the called method

A fix - point may not always be reached for type - propaga- 20 returns an object type , and therefore has a non - void and
tion graphs since cycles in the type - propagation graph may non - primitive return type . All nodes that depend on the call
introduce non - determinism into the computation TPSs . As result are updated .
such , embodiments are not monotonic . However , according Ranking Call Graph Edges
to an embodiment , client configuration information includes According to an embodiment , the CGAA ranks the call
one or more rules to ensure termination of the propagation 25 relationships in the resulting call graph based on the TPSs of
phase and to limit the amount of processing power required the nodes . This allows a user of the call graph to quickly
to propagate the type tuples through the type - propagation determine the most or least likely call relationships in the
graph . For example , in the configuration information , a call graph . According to an embodiment , a client may even
client indicates a specific number of iterations that the request a final call graph that contains only edges that exceed
CGAA should not exceed during the propagation phase . In 30 a certain threshold of probability , which reduces the size of
this case , once the fix point or a certain number of iterations the final call graph according to the needs of the client .
is reached , the call graph is implicitly available to the client . For example , a user that is a bug detection application
As another example , client configuration information may use only those call graph edges that are above a certain
includes type - propagation thresholds to adjust the perfor high threshold , such as 0.75 , to ensure that the detected bugs
mance of the propagation phase . One example of such rule 35 are highly likely to be present at run - time . As another
is that a type may be propagated only when the probability example , a user that is a security auditing application uses all
of the type exceeds a specified threshold . call graph edges over 0.10 probability , which allows the

According to an embodiment , the tuples in each TPS are application to be highly inclusive of call edges that may
ordered by relative probability within the TPS . According to occur at run - time without considering all highly - unlikely
an embodiment , and based on ordered TPSs , propagation of 40 types (which would cause the user to utilize an unnecessary
type tuples is stopped when the TPSs are approximately amount of processing power reviewing the unlikely edges) .
equal , rather than strictly equal . TPSs are strictly equal when Creating Multiple Call Graphs
all tuples in the TPS calculated before the last iteration of Since different client analyses can be interested in dis
propagation , and the tuples in the latest - calculated TPS are similar features or information , there is no need for them to
all the same . TPSs are approximately equal when a particu- 45 operate on the same call graph . While computing multiple
lar number of tuples in the TPSs are the same , where the call graphs can introduce an overhead when many different
particular number of tuples is client - configurable . When kinds of analyses are required to be executed either sequen
tuples are ordered by probability , using approximate equal tially or concurrently , the specialized call graphs improve
ity in the fix point iterations allows for comparison of a the client analysis precision . Moreover , a more precise
certain number of the most probable type tuples when 50 analysis means that the end user of the analysis has to review
determining whether fix point has been reached . Compari fewer reports , which saves time . Thus , according to an
son of at most a set number of tuples during propagation embodiment , the CGAA produces , from a given type - propa
eliminates the need to propagate changes to types with less gation graph , any number of call graphs with any threshold
probability , which leads to more quick resolution of the probability values , as requested by a client .
propagation phase . For example , multiple call graphs are useful in a bug
Propagation Issues for Call Site Nodes detection tool that has different levels of severity for differ

Call site nodes can be more complex than other node ent types of defects that it reports . Specifically , it may be
types , and , at times , require additional processing in order to known that allowing application code to indirectly access
represent the call site nodes in the type - propagation graph certain methods in a library is a cause of a security vulner
with accurate TPSs . According to one embodiment , when an 60 ability with known exploits . The bug detection tool reports
update to the TPS of a call site has been triggered by an any vulnerabilities of this type in the library with a very low
update to the TPS of the call sites ' receiver , the CGAA probability threshold so that the developers of the library can
automatically determines whether the method can be carefully inspect any possibility of the exploit occurring . At
resolved to call to a new and as yet unknown call target . If the same time , the bug detection tool identifies bugs relating
a new call target is discovered , it is added to the callee list 65 to incorrect memory management in the same library , which
of the call sites , and all of the argument nodes of the call site might result in wasting resources . Because this is a much
are added to the worklist . The callee list is used to create the less serious problem , developers require reports of this type

55

US 10,719,314 B2
19 20

with a much higher probability , so that they don't have to mand selections to processor 604 and for controlling cursor
spend time reviewing many potentially incorrect reports . movement on display 612. This input device typically has

To produce the required call graphs according to this two degrees of freedom in two axes , a first axis (e.g. , x) and
example , after ranking the edges of the type - propagation a second axis (e.g. , y) , that allows the device to specify
graph , the CGAA produces a first very inclusive call graph , 5 positions in a plane .
which includes all edges from the type - propagation graph , Computer system 600 may implement the techniques
or which includes all edges with at least a low probability described herein using customized hard - wired logic , one or
(e.g. , P (0.10)) , for use in applications requiring a low more ASICs or FPGAs , firmware and / or program logic
probability threshold . The CGAA further produces a second which in combination with the computer system causes or
more exclusive call graph that includes only edges from the 10 programs computer system 600 to be a special - purpose
type - propagation graph that have a high probability (e.g. , P machine . According to one embodiment , the techniques
(0.90)) , for use in applications requiring a high probability herein are performed by computer system 600 in response to
threshold over the same computer program . processor 604 executing one or more sequences of one or
Hardware Overview more instructions contained in main memory 606. Such

According to one embodiment , the techniques for propa- 15 instructions may be read into main memory 606 from
gating type tuples through a type - propagation graph and another storage medium , such as storage device 610. Execu
producing a call graph with ranked edges described herein tion of the sequences of instructions contained in main
are implemented by one or more special - purpose computing memory 606 causes processor 604 to perform the process
devices . The special - purpose computing devices may be steps described herein . In alternative embodiments , hard
hard - wired to perform the techniques , or may include digital 20 wired circuitry may be used in place of or in combination
electronic devices such as one or more application - specific with software instructions .
integrated circuits (ASICs) or field programmable gate The term “ storage media ” as used herein refers to any
arrays (FPGAs) that are persistently programmed to perform non - transitory media that store data and / or instructions that
the techniques , or may include one or more general purpose cause a machine to operate in a specific fashion . Such
hardware processors programmed to perform the techniques 25 storage media may comprise non - volatile media and / or
pursuant to program instructions in firmware , memory , other volatile media . Non - volatile media includes , for example ,
storage , or a combination . Such special - purpose computing optical disks , magnetic disks , or solid - state drives , such as
devices may also combine custom hard - wired logic , ASICS , storage device 610. Volatile media includes dynamic
or FPGAs with custom programming to accomplish the memory , such as main memory 606. Common forms of
techniques . The special - purpose computing devices may be 30 storage media include , for example , a floppy disk , a flexible
desktop computer systems , portable computer systems , disk , hard disk , solid - state drive , magnetic tape , or any other
handheld devices , networking devices or any other device magnetic data storage medium , a CD - ROM , any other
that incorporates hard - wired and / or program logic to imple optical data storage medium , any physical medium with
ment the techniques . patterns of holes , a RAM , a PROM , and EPROM , a FLASH

For example , FIG . 6 is a block diagram that illustrates a 35 EPROM , NVRAM , any other memory chip or cartridge .
computer system 600 upon which an embodiment of the Storage media is distinct from but may be used in con
invention may be implemented . Computer system 600 junction with transmission media . Transmission media par
includes a bus 602 or other communication mechanism for ticipates in transferring information between storage media .
communicating information , and a hardware processor 604 For example , transmission media includes coaxial cables ,
coupled with bus 602 for processing information . Hardware 40 copper wire and fiber optics , including the wires that com
processor 604 may be , for example , a general purpose prise bus 602. Transmission media can also take the form of
microprocessor acoustic or light waves , such as those generated during

Computer system 600 also includes a main memory 606 , radio - wave and infra - red data communications .
such as a random access memory (RAM) or other dynamic Various forms of media may be involved in carrying one
storage device , coupled to bus 602 for storing information 45 or more sequences of one or more instructions to processor
and instructions to be executed by processor 604. Main 604 for execution . For example , the instructions may ini
memory 606 also may be used for storing temporary vari tially be carried on a magnetic disk or solid - state drive of a
ables or other intermediate information during execution of remote computer . The remote computer can load the instruc
instructions to be executed by processor 604. Such instruc tions into its dynamic memory and send the instructions over
tions , when stored in non - transitory storage media acces- 50 a telephone line using a modem . A modem local to computer
sible to processor 604 , render computer system 600 into a system 600 can receive the data on the telephone line and
special - purpose machine that is customized to perform the use an infra - red transmitter to convert the data to an infra - red
operations specified in the instructions . signal . An infra - red detector can receive the data carried in

Computer system 600 further includes a read only the infra - red signal and appropriate circuitry can place the
memory (ROM) 608 or other static storage device coupled 55 data on bus 602. Bus 602 carries the data to main memory
to bus 602 for storing static information and instructions for 606 , from which processor 604 retrieves and executes the
processor 604. A storage device 610 , such as a magnetic instructions . The instructions received by main memory 606
disk , optical disk , or solid - state drive is provided and may optionally be stored on storage device 610 either before
coupled to bus 602 for storing information and instructions . or after execution by processor 604 .

Computer system 600 may be coupled via bus 602 to a 60 Computer system 600 also includes a communication
display 612 , such as a cathode ray tube (CRT) , for displaying interface 618 coupled to bus 602. Communication interface
information to a computer user . An input device 614 , includ 618 provides a two - way data communication coupling to a
ing alphanumeric and other keys , is coupled to bus 602 for network link 620 that is connected to a local network 622 .
communicating information and command selections to For example , communication interface 618 may be an
processor 604. Another type of user input device is cursor 65 integrated services digital network (ISDN) card , cable
control 616 , such as a mouse , a trackball , or cursor direction modem , satellite modem , or a modem to provide a data
keys for communicating direction information and com communication connection to a corresponding type of tele

US 10,719,314 B2
21 22

phone line . As another example , communication interface OS 710 can execute directly on the bare hardware 720
618 may be a local area network (LAN) card to provide a (e.g. , processor (s) 604) of computer system 600. Alterna
data communication connection to a compatible LAN . Wire tively , a hypervisor or virtual machine monitor (VMM) 730
less links may also be implemented . In any such implemen may be interposed between the bare hardware 720 and the
tation , communication interface 618 sends and receives 5 OS 710. In this configuration , VMM 730 acts as a software
electrical , electromagnetic or optical signals that carry digi " cushion ” or virtualization layer between the OS 710 and the
tal data streams representing various types of information . bare hardware 720 of the computer system 600 .
Network link 620 typically provides data communication VMM 730 instantiates and runs one or more virtual

through one or more networks to other data devices . For machine instances (“ guest machines ”) . Each guest machine
example , network link 620 may provide a connection 10 comprises a " guest " operating system , such as OS 710 , and
through local network 622 to a host computer 624 or to data one or more applications , such as application (s) 702 ,
equipment operated by an Internet Service Provider (ISP) designed to execute on the guest operating system . The
626. ISP 626 in turn provides data communication services VMM 730 presents the guest operating systems with a
through the world wide packet data communication network virtual operating platform and manages the execution of the
now commonly referred to as the “ Internet ” 628. Local 15 guest operating systems .
network 622 and Internet 628 both use electrical , electro In some instances , the VMM 730 may allow a guest
magnetic or optical signals that carry digital data streams . operating system to run as if it is running on the bare
The signals through the various networks and the signals on hardware 720 of computer system 600 directly . In these
network link 620 and through communication interface 618 , instances , the same version of the guest operating system
which carry the digital data to and from computer system 20 configured to execute on the bare hardware 720 directly may
600 , are example forms of transmission media . also execute on VMM 730 without modification or recon

Computer system 600 can send messages and receive figuration . In other words , VMM 730 may provide full
data , including program code , through the network (s) , net hardware and CPU virtualization to a guest operating system
work link 620 and communication interface 618. In the in some instances .
Internet example , a server 630 might transmit a requested 25 In other instances , a guest operating system may be
code for an application program through Internet 628 , ISP specially designed or configured to execute on VMM 730 for
626 , local network 622 and communication interface 618 . efficiency . In these instances , the guest operating system is

The received code may be executed by processor 604 as " aware ” that it executes on a virtual machine monitor . In
it is received , and / or stored in storage device 610 , or other other words , VMM 730 may provide para - virtualization to a
non - volatile storage for later execution . 30 guest operating system in some instances .
Software Overview A computer system process comprises an allotment of

FIG . 7 is a block diagram of a basic software system 700 hardware processor time , and an allotment of memory
that may be employed for controlling the operation of (physical and / or virtual) , the allotment of memory being for
computer system 600. Software system 700 and its compo storing instructions executed by the hardware processor , for
nents , including their connections , relationships , and func- 35 storing data generated by the hardware processor executing
tions , is meant to be exemplary only , and not meant to limit the instructions , and / or for storing the hardware processor
implementations of the example embodiment (s) . Other soft state (e.g. content of registers) between allotments of the
ware systems suitable for implementing the example hardware processor time when the computer system process
embodiment (s) may have different components , including is not running . Computer system processes run under the
components with different connections , relationships , and 40 control of an operating system , and may run under the
functions . control of other programs being executed on the computer

Software system 700 is provided for directing the opera system .
tion of computer system 600. Software system 700 , which Cloud Computing
may be stored in system memory (RAM) 606 and on fixed The term “ cloud computing ” is generally used herein to
storage (e.g. , hard disk or flash memory) 610 , includes a 45 describe a computing model which enables on - demand
kernel or operating system (OS) 710 . access to a shared pool of computing resources , such as

The OS 710 manages low - level aspects of computer computer networks , servers , software applications , and ser
operation , including managing execution of processes , vices , and which allows for rapid provisioning and release of
memory allocation , file input and output (I / O) , and device resources with minimal management effort or service pro
I / O . One or more application programs , represented as 50 vider interaction .
702A , 702B , 702C . . . 702N , may be " loaded ” (e.g. , A cloud computing environment (sometimes referred to as
transferred from fixed storage 610 into memory 606) for a cloud environment , or a cloud) can be implemented in a
execution by the system 700. The applications or other variety of different ways to best suit different requirements .
software intended for use on computer system 600 may also For example , in a public cloud environment , the underlying
be stored as a set of downloadable computer - executable 55 computing infrastructure is owned by an organization that
instructions , for example , for downloading and installation makes its cloud services available to other organizations or
from an Internet location (e.g. , a Web server , an app store , to the general public . In contrast , a private cloud environ
or other online service) . ment is generally intended solely for use by , or within , a

Software system 700 includes a graphical user interface single organization . A community cloud is intended to be
(GUI) 715 , for receiving user commands and data in a 60 shared by several organizations within a community ; while
graphical (e.g. , " point - and - click " or " touch gesture ") fash a hybrid cloud comprises two or more types of cloud (e.g. ,
ion . These inputs , in turn , may be acted upon by the system private , community , or public) that are bound together by
700 in accordance with instructions from operating system data and application portability .
710 and / or application (s) 702. The GUI 715 also serves to Generally , a cloud computing model enables some of
display the results of operation from the OS 710 and 65 those responsibilities which previously may have been pro
application (s) 702 , whereupon the user may supply addi vided by an organization's own information technology
tional inputs or terminate the session (e.g. , log off) . department , to instead be delivered as service layers within

US 10,719,314 B2
23 24

a cloud environment , for use by consumers (either within or 3. The method of claim 1 , wherein propagating type tuples
external to the organization , according to the cloud's public / across the plurality of nodes comprises :
private nature) . Depending on the particular implementa generating a generated type tuple for a particular node of
tion , the precise definition of components or features pro the plurality of nodes ;
vided by or within each cloud service layer can vary , but 5 wherein the particular node is a child node of a first parent
common examples include : Software as a Service (SaaS) , in node and a second parent node in the plurality of nodes ; which consumers use software applications that are running wherein the first parent node is associated with a first type
upon a cloud infrastructure , while a SaaS provider manages tuple comprising a particular type and a first probability
or controls the underlying cloud infrastructure and applica value ; tions . Platform as a Service (PaaS) , in which consumers can 10 wherein the second parent node is associated with a use software programming languages and development tools second type tuple comprising the particular type and a supported by a PaaS provider to develop , deploy , and second probability value ; otherwise control their own applications , while the PaaS wherein the generated type tuple for the particular node provider manages or controls other aspects of the cloud
environment (i.e. , everything below the run - time execution 15 comprises the particular type and a third probability
environment) . Infrastructure as a Service (IaaS) , in which value that is based , at least in part , on the first prob
consumers can deploy and run arbitrary software applica ability value and the second probability value .
tions , and / or provision processing , storage , networks , and 4. The method of claim 3 , wherein the type - propagation
other fundamental computing resources , while an IaaS pro graph includes information identifying , for the particular
vider manages or controls the underlying physical cloud 20 node , the first parent node and the particular parent node .
infrastructure (i.e. , everything below the operating system 5. The method of claim 3 , wherein :
layer) . Database as a Service (DBaaS) in which consumers the first parent node is further associated with a third type
use a database server or Database Management System that tuple comprising a second type and a fourth probability
is running upon a cloud infrastructure , while a DbaaS value ;
provider manages or controls the underlying cloud infra- 25 the method further comprises :
structure , applications , and servers , including one or more determining a fifth probability value based , at least in
database servers . part , on the fourth probability value ;

In the foregoing specification , embodiments of the inven assigning , to the particular node , a second generated
tion have been described with reference to numerous spe type tuple that comprises the second type and the
cific details that may vary from implementation to imple- 30 fifth probability value .
mentation . The specification and drawings are , accordingly , 6. The method of claim 5 , further comprising :
to be regarded in an illustrative rather than a restrictive determining that the second parent node is not associated
sense . The sole and exclusive indicator of the scope of the with any type tuple that comprises the second type ;
invention , and what is intended by the applicants to be the wherein , in response to determining that the second parent
scope of the invention , is the literal and equivalent scope of 35 node is not associated with any type tuple that com
the set of claims that issue from this application , in the prises the second type , said determining the fifth prob
specific form in which such claims issue , including any ability value is further based on a nil probability of the
subsequent correction . second parent node being associated with the second
What is claimed is : type .
1. A computer - executed method comprising : 7. The method of claim 5 , further comprising :
creating a type - propagation graph that maps call relation weighting the fourth probability value based on the third

ships based on particular computer code ; type tuple satisfying a condition of a configurable
wherein the type - propagation graph comprises a plurality parameter , to produce a weighted fourth probability

of nodes that represent respective program variables value ;
that are referred to in the particular computer code ; wherein the fourth probability value , which is used , at

for each node of a set of nodes of the plurality of nodes : least partially , as a basis of said determining the fifth
identifying one or more types that are associated , in the probability value , is the weighted fourth probability

particular computer code , with a particular program value .
variable that is represented by said each node , 8. The method of claim 1 , further comprising :

determining a respective probability value for each of 50 identifying a public function that is defined in the par
the one or more types that are associated with the ticular computer code ; and
particular program variable , wherein the probability wherein creating the type - propagation graph comprises
value for a particular type , of the one or more types , representing , as a program variable in the type - propa
represents a probability that the particular program gation graph , a particular argument of the public func
variable is of the particular type during any given 55 tion .
execution of the particular computer code , and 9. The method of claim 1 , wherein :

associating said each node with one or more type a particular node , of the set of nodes , represents a par
tuples , wherein each type tuple , of the one or more ticular unknown element in the particular computer
type tuples , includes information identifying a code ;
respective type of the one or more types and the 60 the particular unknown element is associated with par
determined probability value that was identified for ticular one or more types ; and
the respective type ; and for the particular node , determining a respective prob

propagating type tuples across the plurality of nodes ; ability value for each of the particular one or more
wherein the method is performed by one or more com types that are associated with the particular unknown

puting devices . element , comprises :
2. The method of claim 1 , wherein the particular computer identifying a declared type for the particular unknown

code is object - oriented . element ,

40

45

65

5

US 10,719,314 B2
25 26

identifying , in configuration information , a plurality of includes information identifying , for the particular node , the
features associated with the declared type , and first parent node and the second parent node .

based on the plurality of features , determining prob 15. The one or more non - transitory computer - readable
abilities for the particular one or more types associ media of claim 13 , wherein :
ated with the particular unknown element . the first parent node is further associated with a third type

10. The method of claim 9 , wherein : tuple comprising a second type and a fourth probability
the particular unknown element is a particular argument value ;
of public function in the particular computer code ; the one or more sequences of instructions further com

the method further comprises : prise instructions that , when executed by one or more
identifying one or more call sites , in the particular 10 processors , cause :

computer code , that invoke the public function ; determining a fifth probability value based , at least in
wherein the one or more call sites identify one or more part , on the fourth probability value ;

call - site - identified types for the particular argument ; assigning , to the particular node , a second generated
and type tuple that comprises the second type and the

weighting probability values of the one or more iden- 15 fifth probability value .
tified types , of the one or more types associated with 16. The one or more non - transitory computer - readable
the particular program variable , differently than media of claim 15 , wherein the one or more sequences of
other types associated with the particular program instructions further comprise instructions that , when
variable . executed by one or more processors , cause :

11. One or more non - transitory computer - readable media 20 determining that the second parent node is not associated
storing one or more sequences of instructions that , when with any type tuple that comprises the second type ;
executed by one or more processors , cause : wherein , in response to determining that the second parent

creating a type - propagation graph that maps call relation node is not associated with any type tuple that com
ships based on particular computer code ; prises the second type , said determining the fifth prob

wherein the type - propagation graph comprises a plurality 25 ability value is further based on a nil probability of the
of nodes that represent respective program variables second parent node being associated with the second
that are referred to in the particular computer code ; type .

for each node of a set of nodes of the plurality of nodes : 17. The one or more non - transitory computer - readable
identifying one or more types that are associated , in the media of claim 15 , wherein the one or more sequences of

particular computer code , with a particular program 30 instructions further comprise instructions that , when
variable that is represented by said each node , executed by one or more processors , cause :

determining a respective probability value for each of weighting the fourth probability value based on the third
the one or more types that are associated with the type tuple satisfying a condition of a configurable
particular program variable , wherein the probability parameter , to produce a weighted fourth probability
value for a particular type , of the one or more types , 35 value ;
represents a probability that the particular program wherein the fourth probability value , which is used , at
variable is of the particular type during any given least partially , as a basis of said determining the fifth
execution of the particular computer code , and probability value , is the weighted fourth probability

associating said each node with one or more type value .
tuples , wherein each type tuple , of the one or more 40 18. The one or more non - transitory computer - readable
type tuples , includes information identifying a media of claim 11 , wherein the one or more sequences of
respective type of the one or more types and the instructions further comprise instructions that , when
determined probability value that was identified for executed by one or more processors , cause :
the respective type ; and identifying a public function that is defined in the par

propagating type tuples across the plurality of nodes . ticular computer code ; and
12. The one or more non - transitory computer - readable wherein creating the type - propagation graph comprises

media of claim 11 , wherein the particular computer code is representing , as a program variable in the type - propa
object - oriented . gation graph , a particular argument of the public func

13. The one or more non - transitory computer - readable tion .
media of claim 11 , wherein propagating type tuples across 50 19. The one or more non - transitory computer - readable
the plurality of nodes comprises : media of claim 11 , wherein :

generating a generated type tuple for a particular node of a particular node , of the set of nodes , represents a par
the plurality of nodes ; ticular unknown element in the particular computer

wherein the particular node is a child node of a first parent code ;
node and a second parent node in the plurality of nodes ; 55 the particular unknown element is associated with par

wherein the first parent node is associated with a first type ticular one or more types ; and
tuple comprising a particular type and a first probability for the particular node , determining a respective prob
value ; ability value for each of the particular one or more

wherein the second parent node is associated with a types that are associated with the particular unknown
second type tuple comprising the particular type and a 60 element , comprises :
second probability value ; identifying a declared type for the particular unknown

wherein the generated type tuple for the particular node element , comprises the particular type and a third probability identifying , in configuration information , a plurality of
value that is based , at least in part , on the first prob features associated with the declared type , and
ability value and the second probability value . based on the plurality of features , determining prob

14. The one or more non - transitory computer - readable abilities for the particular one or more types associ
media of claim 13 , wherein the type - propagation graph ated with the particular unknown element .

45

65

28

5

US 10,719,314 B2
27

20. The one or more non - transitory computer - readable
media of claim 19 wherein :

the particular unknown element is a particular argument
of a public function in the particular computer code ;

the one or more sequences of instructions further com
prise instructions that , when executed by one or more
processors , cause :
identifying one or more call sites , in the particular

computer code , that invoke the public function ;
wherein the one or more call sites identify one or more 10

call - site - identified types for the particular argument ;
wherein the particular one or more types associated with

the particular unknowon element comprise the one or
more cell - site - identified types ; and
weighting probability values of the one or more call- 15

site - identified types , of the particular one or more
types associated with the particular unknown ele
ment , differently than other types of the particular
one or more types associated with the particular
unknown element . 20

